Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:41:49.297Z Has data issue: false hasContentIssue false

Some multipliers on H1P(G)

Published online by Cambridge University Press:  09 April 2009

Hiroshi Yamaguchi
Affiliation:
Department of Mathematics Hokkaido UniversitySapporo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we define the function space H1P(G) on a LCA group G with the algebraically ordered dual, and construct a multiplier on H1P(G) similar to the one given by Gaudry (1968).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Edwards, R. E. and Gauudry, G. I. (1977), Littlewood-Paley and multipliers theorem (SpringerVerlag, Berlin-Heidelberg-New York).CrossRefGoogle Scholar
Gaudry, G. I. (1968). ‘Hp multipliers and inequality of Hardy and Littlewood’, J. Austral. Math. Soc. 10, 2332.CrossRefGoogle Scholar
Hewitt, E. and Ross, K. (1971), Abstract harmonic analysis, Vol. II (Springer-Verlag, Berlin-Heidelberg-New York).Google Scholar
Larsen, R. (1971). An introduction to the theory of multipliers (Springer-Verlag, Berlin-Heidelberg-New York).CrossRefGoogle Scholar
Meyer, Y. (1968), ‘Endomorphismes de inéaux fermés de L1(G), classes de Haerdy, et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1, 499580.CrossRefGoogle Scholar
Otaki, H. (1977), ‘A relation between the F. and M. Riesz theorem and the structures of LCA groups,’ Hokkaido Math. J. VI, 306312.Google Scholar
Rudin, W. (1962a), Fourier analysis on groups (New York), (Interscience).Google Scholar
Rudin, W. (1962b), ‘Trigonometric series with gaps’, J. Math. Mech. 9, 203228.Google Scholar