Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T23:37:23.995Z Has data issue: false hasContentIssue false

SOME ISOMORPHISMS IN DERIVED FUNCTORS AND THEIR APPLICATIONS

Published online by Cambridge University Press:  15 May 2013

K. KHASHYARMANESH*
Affiliation:
Department of Pure Mathematics, Ferdowsi University of Mashhad, PO Box 1159-91775, Mashhad, Iran
F. KHOSH-AHANG
Affiliation:
Department of Mathematics, Ilam University, PO Box 69315-516, Ilam, Iran email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $R$ be a commutative Noetherian ring, $M$ be a finitely generated $R$-module and $\mathfrak{a}$ be an ideal of $R$ such that $\mathfrak{a}M\not = M$. We show among the other things that, if $c$ is a nonnegative integer such that ${ H}_{\mathfrak{a}}^{i} (M)= 0$ for all $i\lt c$, then there is an isomorphism $\mathrm{End} ({ H}_{\mathfrak{a}}^{c} (M))\cong { \mathrm{Ext} }_{R}^{c} ({ H}_{\mathfrak{a}}^{c} (M), M)$; and if $c$ is a nonnegative integer such that ${ H}_{\mathfrak{a}}^{i} (M)= 0$ for all $i\not = c$, there are the following isomorphisms:

(i) $~\quad{ H}_{\mathfrak{b}}^{i} ({ H}_{\mathfrak{a}}^{c} (M))\cong { H}_{\mathfrak{b}}^{i+ c} (M)$ and

(ii) $\quad{ \mathrm{Ext} }_{R}^{i} (R/ \mathfrak{b}, { H}_{\mathfrak{a}}^{c} (M))\cong { \mathrm{Ext} }_{R}^{i+ c} (R/ \mathfrak{b}, M)$

for all $i\in { \mathbb{N} }_{0} $ and all ideals $\mathfrak{b}$ of $R$ with $\mathfrak{b}\supseteq \mathfrak{a}$. We also prove that if $\mathfrak{a}$ and $\mathfrak{b}$ are ideals of $R$ with $\mathfrak{b}\supseteq \mathfrak{a}$ and $c: = \mathrm{grade} (\mathfrak{a}, M)$, then there exists a natural homomorphism from $\mathrm{End} ({ H}_{\mathfrak{a}}^{c} (M))$ to $\mathrm{End} ({ H}_{\mathfrak{b}}^{c} (M))$, where $\mathrm{grade} (\mathfrak{a}, M)$ is the maximum length of $M$-sequences in $\mathfrak{a}$.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Bass, H., ‘On the ubiquity of Gorenstein rings’, Math. Z. 82 (1983), 1829.Google Scholar
Brodmann, M. and Sharp, R. Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Hellus, M., ‘Local cohomology and complete intersections of rank 1’, Preprint, arXiv:math.Ac/0509652 v1.Google Scholar
Hellus, M. and Schenzel, P., ‘On cohomological complete intersection’, J. Algebra 320 (10) (2008), 37333748.CrossRefGoogle Scholar
Hellus, M. and Stückrad, J., ‘On endomorphism rings of local cohomology’, Proc. Amer. Math. Soc. 130 (2008), 23332341.CrossRefGoogle Scholar
Khashyarmanesh, K., ‘On the endomorphism rings of local cohomology modules’, Canad. Math. Bull. 53 (4) (2010), 667673.CrossRefGoogle Scholar
Khashyarmanesh, K. and Yassi, M., ‘On the finiteness property of generalized local cohomology modules’, Algebra Colloq. 12 (2) (2005), 293300.CrossRefGoogle Scholar
Schenzel, P., ‘On endomorphism rings and dimensions of local cohomology modules’, Proc. Amer. Math. Soc. 137 (4) (2009), 13151322.CrossRefGoogle Scholar