Published online by Cambridge University Press: 09 April 2009
We construct irreducible unitary representations of a finitely generated free group which are weakly contained in the left regular representation and in which a given linear combination of the generators has an eigenvalue. When the eigenvalue is specified, we conjecture that there is only one such representation. The representation we have found is described explicitly (modulo inversion of a certain rational map on Euclidean space) in terms of a positive definite function, and also by means of a quasi-invariant probability measure on the combinatorial boundary of the group.