Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T09:13:59.031Z Has data issue: false hasContentIssue false

Some geometric extremal problems*

Published online by Cambridge University Press:  09 April 2009

Einar Hille
Affiliation:
University of California, Irvine Irvine, California, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent study of generalized transfinite dimeters [4, 5] some geometric extremal problems were encountered. These form the subject matter of this note.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1966

References

[1]van der corput, J. G. and Schaake, G., “Anwendung einer Blichfeldschen Beweismethode in der Geometrie der Zahlem”, Acta Arithmetica, 2 (1937) 152160.CrossRefGoogle Scholar
[2]Thót, L. Fejes, “On the sum of distances determined by a point set”, Acta Mathematica Academiae Scientiarum Hungaricae, 7 (1957) 397401.CrossRefGoogle Scholar
[3]Thót, L. Fejes, “Über eine Punktverteilung auf der kugel”, Acta Mathematica Academiae Scientiarum Hungaricae, 10 (1959) 1319.CrossRefGoogle Scholar
[4]Hille, E., “A note on transfinite diameters”, Journal d'Analyse, Jerusalem, 14 (1965) 209224.Google Scholar
[5]Hille, E., “Topics in classical analysis”, in Saaty, T. L., Lectures on Modern Mathematics, Volume III, Wiley, New York, 1965. See pp. 3443.Google Scholar
[6]Schopp, J., “Simplexungleichungen”, Elemente der Mathematik, 16 (1961) 1316.Google Scholar