Article contents
Some finitely based varieties of rings
Published online by Cambridge University Press: 09 April 2009
Extract
The results in this paper are consequences of an attempt many years ago to extend to loops some form of the theorem of Lyndon [12] that any nilpotent group has finitely based identities. Having failed in this, we looked for other algebras for which a similar approach might work. The algebra has to belong to a variety in which finitely generated algebras are finitely related and we must be able to bound the number of variables needed in a basis. Commutative Moufang loops, because of the extensive commutator calculus available (Bruck, [4]), provide one example (Evans, [6]). Here we give two examples from rings, namely associative rings satisfying xn = x (more generally, satisfying an identity x2 · p(x) = x) and nilpotent (non-associative) rings. We are also able to extend some results of Higman [9] on product varieties and we show that for associative rings the product of a nilpotent variety and a finitely based bariety is finitely based.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1974
References
- 4
- Cited by