Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T13:35:57.010Z Has data issue: false hasContentIssue false

Some examples related to Kato's conjecture

Published online by Cambridge University Press:  09 April 2009

Rhonda J. Hughes
Affiliation:
Department of MathematicsBryn Mawr CollegeBryn Mawr, PA 19010USA e-mail: [email protected]
Paul R. Chernoff
Affiliation:
Depratment of MathematicsUniversity of California, Berkeley Berkeley, CA 94720USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the Kato conjecture is true for m-accretive operators with highly singular coefficients. For operators of the form A = *F, where formally corresponds to d/dx + zδ on L2 (R), we prove that Dom (A1/2) = Dom() = e-zHH1(R) where H is the Heavysied function. By adapting recent methods of Auscher and Tchamitchian, we characterize Dom (A) in terms of an unconditional wavelet basis for L2(R).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Auscher, P. and Tchamitchian, P., ‘Ondelettes et conjecture de Kato’, C. R. Acad. Sci. Paris Sér I 313 (1991), 6366.Google Scholar
[2]Auscher, P. and Techmitchian, P., ‘Conjecture de Kato sur les ouverts de R’, Rev. Mat. Iberomericana 8 (1992), 149199.CrossRefGoogle Scholar
[3]Auscher, P. and Tchamitchian, P., ‘Une nouvelle approche de la conjecture de Kato et équations elliptiques complexes en dimension deuxpreprint, IRMAR, Université de Rennes I (1993).Google Scholar
[4]Chernoff, P. and Hughes, R., ‘A new class of point interactions in one dimension’, J. Funct. Anal. 111 (1993), 97117.CrossRefGoogle Scholar
[5]Coifman, R., McIntosh, A. and Meyer, Y., ‘L'intégrale de Cauchy définit un opérateur borné sur L2 (R) pour les courbes lipschitziennes’, Ann. of Math. 116 (1982), 361387.CrossRefGoogle Scholar
[6]Coifman, R., McIntosh, A. and Meyer, Y., ‘The Hillbert transform on Lipschitz curves’, Proc. Centre Math. Anal. Aust. Nat. Univ. 1 (1982), 2669.Google Scholar
[7]Fabes, E., Jerison, D. and Kenig, C., ‘Multilinear Littlewood-Paley estimates with applications to partial differential equations’, Proc. Nat. Acad. Sci. U.S.A 79 (1982), 57465750.CrossRefGoogle ScholarPubMed
[8]Kato, T., Perturbation theory for linear operators (Springer, Berlin, 1966).Google Scholar
[9]Kenig, C. and Meyer, Y., ‘Kato's square roots of accretive operators and Cauchy kernels on Lipschitz curves are the same’, in: Recent progress in Fourier analysis, Math. Studies 111 (North-Holland, New York, 1985) pp. 123145.Google Scholar
[10]McIntosh, A., ‘On the comparability of A 1/2 and A*1/2’, Proc. Amer. Math. Soc. 32 (1972), 430434.Google Scholar
[11]McIntosh, A., ‘Heinz inequalities and the perturbation of spectral families’, Macquarie Mathematics Report, 79–0006, 1979.Google Scholar
[12]McIntosh, A., ‘The square root problem for elliptic operators’, in: Functional analytic methods for partial differential equations, Lecture Notes in Math. 1450 (Springer, Berlin, 1990) pp. 122140.CrossRefGoogle Scholar
[13]McIntosh, A., ‘Operators which have an H functional calculus’, Centre Math. Anal. Austral. Nat. Univ. AT14 (1986), 210231.Google Scholar
[14]Reed, M. and Simon, B., Methods of modern mathematical physics, II: Fourier analysis, selfadjointness (Academic Press, New York, 1975).Google Scholar
[15]Segal, I., ‘Singular perturbations of semigroup generators’, in: Linear operators and approximation, Proc. Conf. Oberwohlfach, 1971, Intetnat. Ser. Numer. Math. 20 (Birkhäuser, Basel, 1972) pp. 5461.Google Scholar
[16]Tchamitchian, Ph., ‘Ondelettes et intégrale de Cauchy sur les courbes lipschitziennes’, Ann. of Math. 129 (1989), 641649.CrossRefGoogle Scholar