No CrossRef data available.
Article contents
A SECTORIAL THEOREM ON COMPLETELY RAMIFIED RATIONAL FUNCTIONS
Published online by Cambridge University Press: 01 February 2008
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that under a sharp growth condition meromorphic functions posses a direction such that at most four rational functions are completely ramified in any sector containing the direction.
Keywords
MSC classification
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 84 , Issue 1 , February 2008 , pp. 131 - 138
- Copyright
- Copyright © 2008 Australian Mathematical Society
References
[1]Ahlfors, L. V., ‘Zur Theorie der Überlagerungsflächen’, Acta Math. 65 (1935), 157–194.CrossRefGoogle Scholar
[2]Fenton, P. C. and Rossi, J., ‘Cercles de remplissage for entire functions’, Bull. London Math. Soc. 31 (1999), 59–66.CrossRefGoogle Scholar
[3]Fenton, P. C. and Rossi, J., ‘Growth of functions in cercles de remplissage’, J. Aust. Math. Soc. 72 (2002), 131–136.Google Scholar
[5]Lehto, O., ‘The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity’, Comment. Math. Helv. 33 (1959), 196–205.CrossRefGoogle Scholar
[6]Lehto, O. and Virtanen, K. I., ‘On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity’, Ann. Acad. Sci. Fenn. Ser. A. I. 240 (1957).Google Scholar
[7]Nevanlinna, R., Le théorème de Picard-Borel et a théorie des fonctions méromorphes (Gauthier-Villars, Paris, 1939). Reprint Chelsea, New York, 1974.Google Scholar
[8]Ostrowski, A., ‘Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes’, Math. Z. 24 (1924), 215–258.CrossRefGoogle Scholar
[9]Rossi, J., ‘A sharp result concerning cercles de remplissage’, Ann. Acad. Sci. Fenn. Ser. A I 20 (1995), 179–185.Google Scholar
[10]Sauer, A., ‘Deficient rational functions and Ahlfors’s theory of covering surfaces’, Ark. Mat. 39 (2001), 151–155.CrossRefGoogle Scholar
[12]Steinmetz, N., ‘The formula of Riemann–Hurwitz and iteration of rational functions’, Complex Var. Theory Appl. 22 (1993), 203–206.Google Scholar
[13]Toda, N., ‘Sur les directions de Julia et de Borel des fonctions algebroides’, Nagoya Math. J. 34 (1969), 1–23.CrossRefGoogle Scholar
[14]Yamanoi, K., ‘The second main theorem for small functions and related problems’, Acta Math. 192 (2004), 225–294.CrossRefGoogle Scholar
[15]Yang, L., ‘Meromorphic functions and their derivatives’, J. London Math. Soc. 25 (1982), 288–296.Google Scholar
[17]Zalcman, L., ‘Normal families: new perspectives’, Bull. Amer. Math. Soc. 35 (1998), 215–230.CrossRefGoogle Scholar
You have
Access