Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-28T19:11:16.984Z Has data issue: false hasContentIssue false

RODRIGUES FORMULA AND LINEAR INDEPENDENCE FOR VALUES OF HYPERGEOMETRIC FUNCTIONS WITH VARYING PARAMETERS

Published online by Cambridge University Press:  05 December 2023

MAKOTO KAWASHIMA*
Affiliation:
Department of Liberal Arts and Basic Sciences, College of Industrial Engineering, Nihon University, Izumi-chou, Narashino, Chiba 275-8575, Japan

Abstract

In this article, we prove a generalized Rodrigues formula for a wide class of holonomic Laurent series, which yields a new linear independence criterion concerning their values at algebraic points. This generalization yields a new construction of Padé approximations including those for Gauss hypergeometric functions. In particular, we obtain a linear independence criterion over a number field concerning values of Gauss hypergeometric functions, allowing the parameters of Gauss hypergeometric functions to vary.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by Michael Coons

This work is partly supported by the Research Institute for Mathematical Sciences, an international joint usage and research centre located in Kyoto University.

References

Alladi, K. and Robinson, M. L., ‘Legendre polynomials and irrationality’, J. reine angew. Math. 318 (1980), 137155.Google Scholar
André, Y., $G$ -Functions and Geometry, Aspects of Mathematics, E13 (Friedr. Vieweg & Sohn, Braunschweig, 1989).Google Scholar
Andrews, G. E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics and its Applications, 71 (Cambridge University Press, Cambridge, 1999).CrossRefGoogle Scholar
Aptekarev, A. I., Branquinho, A. and Van Assche, W., ‘Multiple orthogonal polynomials for classical weights’, Trans. Amer. Math. Soc. 355(10) (2003), 38873914.CrossRefGoogle Scholar
Askey, R., ‘The $1839$ paper on permutations $:$ its relation to the Rodrigues formula and further developments’, in: Mathematics and Social Utopias in France $:$ Olinde Rodrigues and his Times, History of Mathematics, 28 (eds. Altmann, S. and Ortiz, E. L.) (American Mathematical Society, Providence, RI, 2005).Google Scholar
Beukers, F., ‘A note on the irrationality of $\zeta (2)$ and $\zeta (3)$ ’, Bull. Lond. Math. Soc. 11 (1979), 268272.CrossRefGoogle Scholar
Beukers, F., ‘Padé approximations in number theory’, in: Padé Approximation and its Applications, Proc. Conf., Amsterdam, 29–31 October 1980, Lecture Notes in Mathematics, 888 (eds. M. G. de Bruin and H. van Rossum) (Springer, Berlin–Heidelberg–New York, 1981), 9099.CrossRefGoogle Scholar
Beukers, F., ‘Legendre polynomials in irrationality proofs’, Bull. Aust. Math. Soc. 22(03) (1980), 431438.CrossRefGoogle Scholar
Beukers, F., ‘Irrationality of some $p$ -adic $L$ -values’, Acta Math. Sin. 24(4) (2008), 663686.CrossRefGoogle Scholar
David, S., Hirata-Kohno, N. and Kawashima, M., ‘Can polylogarithms at algebraic points be linearly independent $?$ ’, Mosc. J. Comb. Number Theory 9 (2020), 389406.CrossRefGoogle Scholar
David, S., Hirata-Kohno, N. and Kawashima, M., ‘Linear Forms in Polylogarithms’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XXIII (2022), 14471490.Google Scholar
David, S., Hirata-Kohno, N. and Kawashima, M., ‘Linear independence criteria for generalized polylogarithms with distinct shifts’, Acta Arith. 206 (2022), 127169.CrossRefGoogle Scholar
David, S., Hirata-Kohno, N. and Kawashima, M., ‘Generalized hypergeometric $G$ -functions take linear independent values’, Preprint, 2022, arXiv:2203.00207.Google Scholar
Delaygue, E., Rivoal, T. and Roques, J., ‘On Dwork’s p-adic formal congruences theorem and hypergeometric mirror maps’, Mem. Amer. Math. Soc. 246(1163) (2017), 94.Google Scholar
Fischler, S. and Rivoal, T., ‘A note on $G$ -operators of order $2$ ’, Colloq. Math. 170(2) (2022), 321340.CrossRefGoogle Scholar
Grosswald, E., Bessel Polynomials, Lecture Notes in Mathematics, 698 (Springer, Berlin, 1978).CrossRefGoogle Scholar
Hata, M., ‘Legendre type polynomials and irrationality measures’, J. reine angew. Math. 404 (1990), 99125.Google Scholar
Hata, M., ‘On the linear independence of the values of polylogarithmic functions’, J. Math. Pures Appl. (9) 69 (1990), 133173.Google Scholar
Hata, M., ‘Rational approximations to the dilogarithms’, Trans. Amer. Math. Soc. 336 (1993), 363387.CrossRefGoogle Scholar
Kawashima, M. and Poëls, A., ‘Padé approximation for a class of hypergeometric functions and parametric geometry of numbers’, J. Number Theory 243 (2023), 646687.CrossRefGoogle Scholar
Marcovecchio, R., ‘Multiple Legendre polynomials in diophantine approximation’, Int. J. Number Theory 10 (2014), 18291855.CrossRefGoogle Scholar
Matala-aho, T. and Zudilin, W., ‘Euler’s factorial series and global relations’, J. Number Theory 186 (2018), 202210.CrossRefGoogle Scholar
Nikišin, E. M. and Sorokin, V. N., Rational Approximations and Orthogonality, Translations of Mathematical Monographs, 95 (American Mathematical Society, Providence, RI, 1991).CrossRefGoogle Scholar
Padé, H., ‘Sur la représentation approchée d’une fonction par des fractions rationnelles’, Ann. Sci. Éc. Norm. Supér. (4) 9 (1892), 393.CrossRefGoogle Scholar
Padé, H., ‘Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d’introduction à la théorie des fractions continues algébriques’, Ann. Sci. Éc. Norm. Supér. (4) 16 (1899), 395426.CrossRefGoogle Scholar
Rasala, R., ‘The Rodrigues formula and polynomial differential operators’, J. Math. Anal. Appl. 84 (1981), 443482.CrossRefGoogle Scholar
Rhin, G. and Toffin, P., ‘Approximants de Padé simultanés de logarithmes’, J. Number Theory 24 (1986), 284297.CrossRefGoogle Scholar
Rivoal, T., ‘Simultaneous Padé approximants to the Euler, exponential and logarithmic functions’, J. Théor. Nombres Bordeaux 27 (2015), 565589.CrossRefGoogle Scholar
Seppälä, L., ‘Euler’s factorial series at algebraic integer points’, J. Number Theory 206 (2020), 250281.CrossRefGoogle Scholar
Siegel, C., ‘Über einige Anwendungen diophantischer Approximationen’, Abh. Preußis. Akad. Wiss. Phys.-Math. Kl 30(1) (1929), 170.Google Scholar
Sorokin, V. N., ‘Simultaneous Padé approximants of functions of Stieltjes type’, Sib. Math. J. 31 (1990), 809817.CrossRefGoogle Scholar
Sorokin, V. N., ‘Simultaneous Padé approximants of functions of Stieltjes type’, Sib. Math. J. 31(5) (1990), 809817.CrossRefGoogle Scholar
Sorokin, V. N., ‘Joint approximations of the square root, logarithm, and arcsine’, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 64(2) (2009), 6569 (in Russian); translation in Moscow Univ. Math. Bull. 64(2) (2009), 80–83.Google Scholar
Väänänen, K., ‘On Padé approximations and global relations of some Euler-type series’, Int. J. Number Theory 14 (2018), 23032315.CrossRefGoogle Scholar
Väänänen, K., ‘On a result of Fel’dman on linear forms in the values of some $E$ -functions’, Ramanujan J. 48 (2019), 3346.CrossRefGoogle Scholar