Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T23:07:43.235Z Has data issue: false hasContentIssue false

Reversible topological spaces

Published online by Cambridge University Press:  09 April 2009

M. Rajagopalan
Affiliation:
University of Illinois and Lehigh University
A. Wilansky
Affiliation:
University of Illinois and Lehigh University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose to study a topological property which is not new, but seems not to have been systematically investigated.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1966

References

[1]Anderson, R. D., ‘Topological properties of the Hilbert cube and the infinite product of open intervals’, Theorem 9. To appear in the Transactions of the American Mathematical Society.Google Scholar
[2]Berri, M. P., ‘Minimal topological spaces’, Transactions of the American Mathematical Society 108 (1963), 97105.CrossRefGoogle Scholar
[3]Berri, M. P., ‘Categories of certain minimal topological spaces’, this Journal 4 (1964), 7882.Google Scholar
[4]Bessaga, C. M. and Klee, V. L., ‘Every non-normable F space is homeomorphic with its closed convex bodies’, Mathematische Annalen (to appear).Google Scholar
[5]Gleason, A., ‘Projective topological spaces’, Illinois Journal of Mathematics 2 (1958), 482489.CrossRefGoogle Scholar
[6]Hewitt, E., ‘A class of topological spaces’, Bulletin of the American Mathematical Society 55 (1949), 421426.CrossRefGoogle Scholar
[7]Isawata, T., ‘On a completely regular space X and T(X)’, Science Reports Tokyo Daigaku, A. 5 (1956), 227236 (MR 19, p. 1069).Google Scholar
[8]Katetov, M., ‘On mappings of countable spaces’, Colloquium Mathematicum 2 (1949), 3033.CrossRefGoogle Scholar
[9]Kelley, J. L., General topology (Van Nostrand).Google Scholar
[10]Kelley, J. L. and Namioka, I., Linear topological spaces (Van Nostrand).Google Scholar
[11]Levine, N., ‘Simple extensions of topologies’, American Mathematical Monthly 71 (1964), 2225.CrossRefGoogle Scholar
[12]Levine, N., ‘When are compact and closed equivalent’, American Mathematical Monthly 72 (1965), 4144.CrossRefGoogle Scholar
[13]Michael, E. A., Locally multiplicatively-convex topological algebras, Memoris of the American Mathematical Society 11 (1952).Google Scholar
[14]Scarborough, C. T. and Stone, A. H., Notices of the American Mathematical Society 11 (1964), p. 107, p. 130.Google Scholar
[15]Smythe, N. and Wilkins, C. A., ‘Minimal Hausdorff and maximal compact spaces’, this Journal 3 (1963), 167171.Google Scholar
[16]Sierpinski, W., General Topology (University of Toronto, 1952).CrossRefGoogle Scholar
[17]Sierpinski, W., ‘Sur une propriété topologique des ensembles denses en soi’, Fundamenta Mathematica, I (1920), 1116.CrossRefGoogle Scholar
[18]Wada, J., ‘One to one mappings on locally convex spaces’, Osaka Mathematical Journal 8 (1956), 1922 (MR 18, p. 140).Google Scholar
[19]Weston, J. D., ‘On the comparison of topologies’, Journal of the London Mathematical Society 32 (1957), 342354.CrossRefGoogle Scholar
[20]Wilansky, A., Functional Analysis (Blaisdell, 1964).Google Scholar
[21]Lee, Yu-Lee, ‘Finer topologies with the same class of homeomorphisms’, Notices of the American Mathematical Society 12 (1965), p. 136.Google Scholar