Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T23:13:27.695Z Has data issue: false hasContentIssue false

A REMARK ON THE BRYLINSKI CONJECTURE FOR ORBIFOLDS

Published online by Cambridge University Press:  11 October 2011

L. BAK
Affiliation:
Institute of Mathematics, Jagiellonian University, Krakow, Poland (email: [email protected])
A. CZARNECKI*
Affiliation:
Institute of Mathematics, Jagiellonian University, Krakow, Poland (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper presents a proof of the Brylinski conjecture for compact Kähler orbifolds. The result is a corollary of the foliated version of the Mathieu theorem on symplectic harmonic representations of de Rham cohomology classes. The proofs are based on the idea of representing an orbifold as the leaf space of a Riemannian foliation and on the correspondence between foliated and holonomy invariant objects for foliated manifolds.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Alekseevsky, D., Kriegl, A., Losik, M. and Michor, P., ‘The Riemannian geometry of orbit spaces—the metric, geodesics, and integrable systems’, Publ. Math. Debrecen 62 (2003), 247276.CrossRefGoogle Scholar
[2]Brylinski, J.-L., ‘A differential complex for Poisson manifolds’, J. Differential Geom. 28 (1988), 93114.CrossRefGoogle Scholar
[3]Chen, W. and Ruan, Y., ‘Orbifold Gromov–Witten theory’, in: Orbifolds in Mathematics and Physics (American Mathematical Society, Providence, RI, 2002), pp. 2585.CrossRefGoogle Scholar
[4]Domínguez, D., ‘Finiteness and tenseness theorems for Riemannian foliations’, Amer. J. Math. 120 (1998), 12371276.CrossRefGoogle Scholar
[5]El Kacimi-Alaoui, A. and Hector, G., ‘Décomposition de Hodge basique pour un feuilletage Riemannien’, Ann. Inst. Fourier (Grenoble) 36 (1986), 207227.CrossRefGoogle Scholar
[6]Fernández, M., Ibáñez, R. and de León, M., ‘On a Brylinski conjecture for compact symplectic manifolds’, Quaternionic Structures in Mathematics and Physics, Trieste, 1994 (SISSA, Trieste, 1998), pp. 119–126.Google Scholar
[7]Girbau, J., Haefliger, A. and Sundararaman, D., ‘On deformations of transversely holomorphic foliations’, J. reine angew. Math. 345 (1983), 122147.Google Scholar
[8]Goresky, M. and MacPherson, R., ‘Intersection homology theory’, Topology 19 (1980), 135162.CrossRefGoogle Scholar
[9]Griffiths, P. and Harris, J., Principles of Algebraic Geometry (Wiley, New York, 1978).Google Scholar
[10]Józefowicz, M. and Wolak, R., ‘A few remarks on the geometry of the space of leaf closures of a Riemannian foliation’, Geometry and Topology of Manifolds, Banach Center Publications, 76 (Institute of Mathematics, Polish Academy of Sciences, Warszawa, 2007), pp. 395–409.CrossRefGoogle Scholar
[11]Masa, X., ‘Duality and minimality in Riemannian foliations’, Comment. Math. Helv. 67 (1992), 1727.CrossRefGoogle Scholar
[12]Mathieu, O., ‘Harmonic cohomology classes of symplectic manifolds’, Comment. Math. Helv. 70 (1995), 19.CrossRefGoogle Scholar
[13]Moerdijk, I. and Mrčun, J., Introduction to Foliations and Lie Groupoids (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
[14]Molino, P., Riemannian Foliations (Birkhäuser, Boston, 1988), translated by G. Cairns.CrossRefGoogle Scholar
[15]Pak, H. K., ‘Transversal harmonic theory for transversally symplectic flows’, J. Aust. Math. Soc. 84 (2008), 233245.CrossRefGoogle Scholar
[16]Poncin, N., Radoux, F. and Wolak, R., ‘A first approximation for quantization of singular spaces’, J. Geom. Phys. 59 (2009), 503518.CrossRefGoogle Scholar
[17]Rummler, H., ‘Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts’, Comment. Math. Helv. 54 (1979), 224239.CrossRefGoogle Scholar
[18]Satake, I., ‘On a generalization of the notion of manifold’, Proc. Natl. Acad. Sci. USA 42 (1956), 359363.CrossRefGoogle ScholarPubMed
[19]Thurston, W., The geometry and topology of three-manifolds, available athttp://www.msri.org/publications/books/gt3m/ 2002.Google Scholar
[20]Tondeur, P., Geometry of Foliations (Birkhäuser, Boston, 1997).CrossRefGoogle Scholar
[21]Wang, Z. Z. and Zaffran, D., ‘A remark on the Hard Lefschetz theorem for Kähler orbifolds’, Proc. Amer. Math. Soc. 137 (2009), 24972501.CrossRefGoogle Scholar
[22]Wolak, R., ‘Foliated and associated geometric structures on foliated manifold’, Ann. Fac. Sci. Toulouse Math. (5) 10 (1989), 337360.CrossRefGoogle Scholar
[23]Yan, D., ‘Hodge structure on symplectic manifold’, Adv. Math. 120 (1996), 143154.CrossRefGoogle Scholar