Published online by Cambridge University Press: 09 April 2009
For a completely regular space X let G(X) be the Graev free topological group on X. While proving G(X) exists for completely regular spaces X, Graev showed that every pseudo-metric on X can be extended to a two-sided invariant pseudo-metric on the abstract group G(X). The free group topology on G(X) is usually strictly finer than this pseudo-metric topology. In particular this is the case when X is not totally disconnected (see Morris and Thompson [7]). It is of interest to know when G(X) has no small subgroups (see Morris [5]). Morris and Thompson [6] showed that this is the case if and only if X admits a continuous metric. The proof relied on properties of the free group topology and it is natural to ask if G(X) with its pseudo-metric topology has no small subgroups when and only when X admits a continuous metric. We show that this is the case. Topological properties of G(X) associated with the pseudo-metric topology have recently been studied by Joiner [3] and Abels [1].