Published online by Cambridge University Press: 09 April 2009
Let V be a finite dimensional Hermitian vector space and K be a compact Lie subgroup of U(V) for which th representation of K on C[V] is multiplicity free. One obtains a canonical basis {pα} for the space C [VR]k of K-invariant polynomials on VR and also a basis {q's. The polynomial pα's yields the homogeneous component of highest degree in qα. The coefficient that express the qα's in terms of the pβ's are the generalized binomial coeffficients of Yan. The main result in this paper shows tht these numbers are rational.