No CrossRef data available.
Published online by Cambridge University Press: 23 October 2018
We consider an extension of the Ramanujan series with a variable $x$. If we let $x=x_{0}$, we call the resulting series ‘Ramanujan series with the shift $x_{0}$’. Then we relate these shifted series to some $q$-series and solve the case of level $4$ with the shift $x_{0}=1/2$. Finally, we indicate a possible way towards proving some patterns observed by the author corresponding to the levels $\ell =1,2,3$ and the shift $x_{0}=1/2$.