Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T14:23:42.098Z Has data issue: false hasContentIssue false

Power-associative regular real normed algebras

Published online by Cambridge University Press:  09 April 2009

Emanuel Strzelecki
Affiliation:
Monash University, Melbourne
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Definition 1. A real algebra A is a real vector space in which an operation of multiplication is defined satisfying the following conditions: for arbitrary x, y, z ∈ A and any real number α.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1966

References

[1]Dunford, N. and Schwartz, J. T., Linear operators, Part I, New York (1964).Google Scholar
[2]Ingelstam, L., “Non-associative normed algebras and Hurwitz' problem.” Arkiv För Matematik 5 (1964), 231238.CrossRefGoogle Scholar
[3]Ingelstam, L., “Real Banach algebras.” Arkiv För Matematik 5 (1964), 239270.CrossRefGoogle Scholar
[4]Jordan, P. and Neumann, J. von, “On inner products in linear metric spaces”, Ann. of Math. (2), 36 (1935), 719723.CrossRefGoogle Scholar
[5]Naimark, M. A., Normed rings, Groningen (1964).Google Scholar
[6]Natanson, I. P., Theory of functions of a real variable, Vol. 1, New York (1955).Google Scholar
[7]Rickart, C. E., General theory of Banach algebras, Princeton (1960).Google Scholar
[8]Strzelecki, E., “Metric properties of normed algebras.” Studies Math. 23 (1963), 4151.CrossRefGoogle Scholar
[9]Urbanik, K. and Wright, F. B., “Absolute-valued algebras”, Proc. of the Amer. Math. Soc. 11, (1960), 861866.CrossRefGoogle Scholar