Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T23:01:33.746Z Has data issue: false hasContentIssue false

Positive solutions of some quasilinear singular second order equations

Published online by Cambridge University Press:  09 April 2009

J. V. Goncalves
Affiliation:
Universidade de Brasilia, Departamento de Matemática, 70910-900 Brasilia(DF), Brazil, e-mail: [email protected]
C. A. P. Santos
Affiliation:
Universidade Federal de Goiás, Departmento de Matemática Catalão(GO), Brazil, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the existence and uniqueness of positive solutions of boundary vlue problems for continuous semilinear perturbations, say f: [0, 1) × (0, ∞) → (0, ∞), of class of quasilinear operators which represent, for instance, the radial form of the Dirichlet problem on the unit ball of RN for the operators: p-Laplacian (1 < p < ∞) ad k-Hessian (1 ≤ k ≤ N). As a key feature, f (r, u) is possibly singular at r = 1 or u =0, Our approach exploits fixed point arguments and the Shooting Method.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Brézis, H. and Oswald, L., ‘Remarks on sublinear elliptic equations’, Nonlinear Anal. 10 (1986), 5564.CrossRefGoogle Scholar
[2]Callegari, A. and Nachman, A., ‘A nonlinear singular boundary value problem in the theory of pseudoplastic fluids’, SIAM J. Appl. Math. 38 (1980), 275281.Google Scholar
[3]Chabrowski, J., ‘Existence results for singular elliptic equations’, Hokkaido Math. J. 20 (1991), 465475.CrossRefGoogle Scholar
[4]Choi, Y. S. and Kim, E. H., ‘On the existence of positive solutions of quasilinear ellipitic boundary value problems’, J. Differential Equations 155 (1999), 423442.CrossRefGoogle Scholar
[5]Choi, Y. S., Lazer, A. C. and McKenna, P. J., ‘On a singular quasilinear anisotropic elliptic boundary value problem’, Trans. Amer. Math. Soc. 347 (1995), 26332641.CrossRefGoogle Scholar
[6]Clement, Ph., Figueiredo, D. G. and Mitidieri, E., ‘Quasilinear elliptic equations with critical exponents’, Topol. Methods Nonlinear Anal. 7 (1996), 133170.CrossRefGoogle Scholar
[7]Clement, Ph., Manasevich, R. and Mitidieri, E., ‘Some existence and nonexistence results for a homogeneous quasilinear problem’, Asymptot. Anal. 17 (1998), 1329.Google Scholar
[8]Crandall, M., Rabinowitz, P. and Tartar, L., ‘On a Dirichlet problem with singular nonlinearity’, Comm. Partial Differential Equations 2 (1977), 193222.CrossRefGoogle Scholar
[9]Diaz, J. I. and Saa, J. E., ‘Existence et unicité de solutions positives pour certaines equations elliptiques quasilinéaires’, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521524.Google Scholar
[10]Figueiredo, D. G.Goncalves, J. V. and Miyagaki, O. H., ‘On a class of quasilinear elliptic problems involving critical Sobolev exponents’, Commun. Contemp. Math. 2 (2000), 4759.CrossRefGoogle Scholar
[11]Fulks, W. and Maybee, J. S., ‘A singular nonlinear equation’, Osaka Math. J. 12 (1960), 119.Google Scholar
[12]Hai, D. D. and Oppenheimer, S. F., ‘Singular boundary value problems for p-Laplacian-like equations’, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 975981.CrossRefGoogle Scholar
[13]Hai, D. D., Schmitt, K. and Shivaji, R., ‘On the number of solutions of boundary value problems involving the p-Laplacian’, Electron. J. Differential Equations 1996 (1996), 19.Google Scholar
[14]Hai, D. D., Schmitt, K. and Shivaji, R., ‘Positive solutions of quasilinear boundary value problems’, J. Math. Anal. Appl. 217 (1998), 672686.CrossRefGoogle Scholar
[15]Lair, A. V. and Shaker, A., ‘Classical and weak solutions of a singular semilinear elliptic problem’, J. Math. Anal. Appl. 211 (1997), 371385.CrossRefGoogle Scholar
[16]Simon, J., Regularité de la solution d'une equation non lineaire dans RN Lecture Notes in Math. 665 (Springer, Berlin, 1978) pp. 203227.Google Scholar
[17]Swanson, C. A. and Kusano, T., ‘Entire positive solutions of singular semilinear elliptic equations’, Japan J. Math. 11 (1985), 145155.Google Scholar
[18]Taliaferro, S. D., ‘A nonlinear singular boundary value problem’, Nonlinear Anal. 3 (1979), 897–894.CrossRefGoogle Scholar
[19]Tso, K., ‘On a real monge-ampère functional’, Invent. Math. 101 (1990), 425448.CrossRefGoogle Scholar
[20]Tso, K., ‘Remarks on critical exponents for Hessian operators’, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 113122.CrossRefGoogle Scholar
[21]Wong, F. H., ‘Uniqueness of positive solutions for Sturm-Liouville boundary value problems’, Proc. Amer. Math. Soc. 126 (1998), 365374.CrossRefGoogle Scholar
[22]Wong, F. H., ‘Existence of positive solutions for m-Laplacian boundary value problems’, Appl. Math. Lett. 12 (1999), 1117.CrossRefGoogle Scholar
[23]Zhang, Z., ‘On a Dirichlet problem with singular nonlinearity’, J. Math. Anal. Appl. 194 (1995), 103113.CrossRefGoogle Scholar