Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T04:08:37.469Z Has data issue: false hasContentIssue false

Positive derivations on f-rings

Published online by Cambridge University Press:  09 April 2009

P. Colville
Affiliation:
Ballarat Institute of Advanced Education, Ballarat.
G. Davis
Affiliation:
Mathematics Department, La Trobe University, Melbourne, Australia
K. Keimel
Affiliation:
Technische Hochschule, Darmstadt, Germany.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper A will denote an f-ring i.e. a lattice-ordered ring in the sense of Birkhoff and Pierce (1956) in which for all x, y, z ∈ A, xy = 0 implies x ∧ zy = 0 = x ∧ yz.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

Bigard, A. (1969), Contribution à la théorie des groups réticulés (Thèse, Paris).Google Scholar
Bigard, A. and Keimel, K. (1969), ‘Sur les endomorphismes conservant les polaires d'un groupe réticulé archimédien’, Bull. Soc. Math. France 97, 381398.CrossRefGoogle Scholar
Birkhoff, G. and Pierce, R. S. (1956), ‘Lattice-ordered rings’, Anais. Acad. Brasil Ciencias 28, 4169.Google Scholar
Henriksen, M. and Isbell, (1962), ‘Lattice-ordered rings and function rings’, Pac. J. Math. 12, 533565.Google Scholar
Johnson, D. G. (1962), ‘On a representation theorem for a class of archimedean lattice-ordered rings’, Proc. Lond. Math. Soc. (3) 12, 207225.Google Scholar