Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T15:04:31.461Z Has data issue: false hasContentIssue false

Permutation polynomials in several variables over residue class rings

Published online by Cambridge University Press:  09 April 2009

H. K. Kaiser
Affiliation:
Institut für Algebra und Diskrete Mathematik Technische Universität WienWiedner Hauptstraße 8–10 A-1040 Vienna, Austria
W. Nöbauer
Affiliation:
Institut für Algebra und Diskrete Mathematik Technische Universität WienWiedner Hauptstraße 8–10 A-1040 Vienna, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept of a permutation polynomial function over a commutative ring with 1 can be generalized to multiplace functions in two different ways, yielding the notion of a k-ary permutation polynomial function (k > 1, k ∈ N) and the notion of a strict k-ary permutation polynomial function respectively. It is shown that in the case of a residue class ring Zm of the integers these two notions coincide if and only if m is squarefree.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Lausch, H. and Nöbauer, W., Algebra of polynomials (North-Holland, Amsterdam, 1973).Google Scholar
[2]Lidl, R. and Niederreiter, H., Finite fields (Addison-Wesley, Reading, Massachusetts, 1983).Google Scholar
[3]Nöbauer, W., ‘Darstellung von Permutationen durch Polynome und rationale Funktionen’, Berichte des Math. Forschungsinst. Oberwolfach 5 (1971), 89100.Google Scholar