Article contents
Pascal's theorem in n–space*
Published online by Cambridge University Press: 09 April 2009
Extract
An analogue in a solid of the well known Pascal's theorem (Baker, [1], p. 219) for a conic is established by Baker ([2], pp. 53–54, Ex. 15) after Chasles [6] and by Salmon ([2], p. 142). The same is discussed in detail by Court [8]. The purpose of this paper is to extend it to a projective space of n dimensions or briefly to an n-space Sn. To prove it, we introduce here once again the idea of a set of n+1 associated lines in Sn as indicated in an earlier work (Mandan, [12]) in analogy with a set of 5 associated lines in S4 (Baker, [4], p. 122), and make use of the method of induction.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1965
References
- 2
- Cited by