Article contents
Oscillations of higher order neutral differential equations
Published online by Cambridge University Press: 09 April 2009
Abstract
Consider the nth-order neutral differential equation where n ≥ 1, δ = ±1, I, K are initial segments of natural numbers, pi, τi, σk ∈ R and qk ≥ 0 for i ∈ I and k ∈ K. Then a necessary and sufficient condition for the oscillation of all solutions of (E) is that its characteristic equation has no real roots. The method of proof has the advantage that it results in easily verifiable sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of all solutionso of Equation (E).
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1992
References
- 6
- Cited by