Published online by Cambridge University Press: 09 April 2009
Consider the nth-order neutral differential equation where n ≥ 1, δ = ±1, I, K are initial segments of natural numbers, pi, τi, σk ∈ R and qk ≥ 0 for i ∈ I and k ∈ K. Then a necessary and sufficient condition for the oscillation of all solutions of (E) is that its characteristic equation has no real roots. The method of proof has the advantage that it results in easily verifiable sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of all solutionso of Equation (E).