Published online by Cambridge University Press: 09 April 2009
The four colour conjecture is well known to be equivalent to the proposition that every trivalent planar graph without an isthmus (i.e. an edge whose removal disconnects the graph) has an edge colouring in three colours ([1], p. 121). By an edge colouring we mean an assignment of colours to the edges of the graph so that no two edges of the same colour meet at a common vertex, and the graph is n-valent if n edges meet at each vertex. An edge colouring by three colours is called a Tait colouring; a trivalent graph which has a Tait colouring can be split in three edge-disjoint 1-factors, i.e. spanning monovalent subgraphs.