Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T23:01:28.775Z Has data issue: false hasContentIssue false

The orders of nonsingular derivations

Published online by Cambridge University Press:  09 April 2009

Aner Shalev
Affiliation:
Institute of Mathematics The Hebrew University Jerusalem 91904 Israel e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nonsingular derivations of modular Lie algebras which have finite multiplicative order play a role in the coclass theory for pro-p groups and Lie algebras. We study the orders of nonsingular derivations of finite-dimensional non-nilpotent Lie algebras of characteristic p > 0. The methods are essentially number-theoretic.

1991 Mathematics subject classification (Amer. Math. Soc): primary 17B50; secondary 12E20.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[AF]Albert, A. A. and Frank, M. S., ‘Simple Lie algebras of characteristic p’, Rend. Torino 14 (1954/1955), 117139.Google Scholar
[BKK]Benkart, G., Kostrikin, A. I. and Kuznetsov, M. I., ‘Finite-dimensional Lie algebras with a nonsingular derivation’, J. Algebra 171 (1995), 894916.CrossRefGoogle Scholar
[CMN]Caranti, A., Mattarei, S. and Newman, M. F., ‘Graded Lie algebras of maximal class’, Trans. Amer. Math. Soc. 349 (1997), 40214051.CrossRefGoogle Scholar
[CN]Caranti, A. and Newman, M. F., ‘Graded Lie algebras of maximal class II’, preprint, 1998.CrossRefGoogle Scholar
[J1]Jacobson, N., ‘A note on automorphisms and derivations of Lie algebras’, Proc. Amer. Math. Soc. 6 (1955), 281283.CrossRefGoogle Scholar
[J2]Jacobson, N., Lie algebras (Wiley-Interscience, New York, 1962).Google Scholar
[Kh]Khukhro, E. I., Nilpotent groups and their automorphisms (de Gruyter, Berlin, 1993).CrossRefGoogle Scholar
[KK]Kostrikin, A. I. and Kuznetsov, M. I., ‘Lie algebras with a nonsingular derivation’, in: Algebra and analysis (Kazan, 1994) (de Gruyter, Berlin, 1996) pp. 8190.Google Scholar
[LGN]Leedham-Green, C. R. and Newman, M. F., ‘Space groups and groups of prime power order I’, Arch. Math. 35 (1980), 193202.CrossRefGoogle Scholar
[LN]Lidl, R. and Niederreiter, H., Introduction to finite fields and their applications (Cambridge Univ. Press, Cambridge, 1986).Google Scholar
[Sh1]Shalev, A., ‘The structure of finite p-groups: effective proof of the coclass conjectures’, Invent. Math. 115 (1994), 315345.CrossRefGoogle Scholar
[Sh2]Shalev, A., ‘Simple Lie algebras and Lie algebras of maximal class’, Arch. Math. 63 (1994), 297301.CrossRefGoogle Scholar
[ShZ]Shalev, A. and Zelmanov, E. I., ‘Pro-p groups of finite coclass’, Math. Proc. Cambridge Philos. Soc. 111 (1992), 417421.CrossRefGoogle Scholar
[St]Strade, H., ‘The classification of the simple modular Lie algebras. VI. Solving the final case’, Trans. Amer. Math. Soc. 350 (1998), 25532628.CrossRefGoogle Scholar