Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T23:16:21.770Z Has data issue: false hasContentIssue false

ORBIFOLDS ARE NOT COMMUTATIVE GEOMETRIES

Published online by Cambridge University Press:  01 February 2008

ADAM RENNIE*
Affiliation:
Institute for Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark Department of Mathematics, Australian National University, Canberra, ACT, 0200, Australia (email: [email protected])
JOSEPH C. VÁRILLY
Affiliation:
Departamento de Física Teórica I, Universidad Complutense, Madrid 28040, Spain Departamento de Matemáticas, Universidad de Costa Rica, 2060 San José, Costa Rica (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we show that the crucial orientation condition forcommutative geometries fails for the natural commutative spectral triple of an orbifold M/G.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

Footnotes

This work was supported by an ARC grant, DP0211367, and by the Statens Naturvidenskabelige Forskningsråd, Denmark. Support from the University Complutense de Madrid and the Vicerrectoría de Investigación of the Universidad de Costa Rica is acknowledged.

References

[1]Carey, A. L., Phillips, J., Rennie, A. and Sukochev, F. A., ‘The Hochschild class of the Chern character for semifinite spectral triples’, J. Funct. Anal. 213 (2004), 111153.CrossRefGoogle Scholar
[2]Connes, A., ‘Gravity coupled with matter and foundation of noncommutative geometry’, Commun. Math. Phys. 182 (1996), 155176.CrossRefGoogle Scholar
[3]Moerdijk, I. and Mrčun, J., Introduction to foliations and Lie groupoids (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
[4]Rennie, A. and Várilly, J. C., ‘Reconstruction of manifolds in noncommutative geometry’, Preprint arXiv:math/0610418 [math.OA], Copenhagen, 2006.Google Scholar