Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T23:26:35.520Z Has data issue: false hasContentIssue false

OPTIMAL REES MATRIX CONSTRUCTIONS FOR ANALYSIS OF DATA

Part of: Semigroups

Published online by Cambridge University Press:  08 December 2011

A. V. KELAREV*
Affiliation:
School of Science, Information Technology and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353, Australia (email: [email protected])
J. L. YEARWOOD
Affiliation:
School of Science, Information Technology and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353, Australia (email: [email protected])
LIFANG ZI
Affiliation:
School of Science, Information Technology and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353, Australia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a new construction involving Rees matrix semigroups and max-plus algebras that is very convenient for generating sets of centroids. We describe completely all optimal sets of centroids for all Rees matrix semigroups without any restrictions on the sandwich matrices.

Type
Research Article
Copyright
Copyright © 2011 Australian Mathematical Publishing Association Inc.

References

[1]Baccelli, F., Cohen, G., Olsder, G. J. and Quadrat, J.-E., Synchronization and Linearity: An Algebra for Discrete Event Systems (Wiley Interscience, New York, 1992).Google Scholar
[2]Bagirov, A. M. and Yearwood, J. L., ‘A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems’, European J. Oper. Res. 170 (2006), 578596.CrossRefGoogle Scholar
[3]Clark, D. M. and Davey, B. A., Natural Dualities for the Working Algebraist (Cambridge University Press, Cambridge, 1998).Google Scholar
[4]Davey, B. A., Jackson, M., Maróti, M. and McKenzie, R. N., ‘Principal and syntactic congruences in congruence-distributive and congruence-permutable varieties’, J. Aust. Math. Soc. 85 (2008), 5974.CrossRefGoogle Scholar
[5]Dazeley, R., Yearwood, J. L., Kang, B. H. and Kelarev, A. V., ‘Consensus clustering and supervised classification for profiling phishing emails in internet commerce security’, Lecture Notes in Comput. Sci. 6232 (2010), 235246.CrossRefGoogle Scholar
[6]Easdown, D., East, J. and FitzGerald, D. G., ‘A presentation of the dual symmetric inverse monoid’, Internat. J. Algebra Comput. 18 (2008), 357374.CrossRefGoogle Scholar
[7]Easdown, D. and Munn, W. D., ‘Trace functions on inverse semigroup algebras’, Bull. Aust. Math. Soc. 52 (1995), 359372.CrossRefGoogle Scholar
[8]Golan, J. S., Semirings and Their Applications (Kluwer Academic, Dordrecht, 1999).CrossRefGoogle Scholar
[9]Howie, J. M., Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).CrossRefGoogle Scholar
[10]Jackson, M., ‘The embeddability of ring and semigroup amalgams is undecidable’, J. Aust. Math. Soc. 69 (2000), 272286.Google Scholar
[11]Jackson, M., ‘On the finite basis problem for finite Rees quotients of free monoids’, Acta Sci. Math. (Szeged) 67 (2001), 121159.Google Scholar
[12]Jackson, M. and Volkov, M., ‘Undecidable problems for completely 0-simple semigroups’, J. Pure Appl. Algebra 213(10) (2009), 19611978.CrossRefGoogle Scholar
[13]Kelarev, A. V., Ring Constructions and Applications (World Scientific, River Edge, NJ, 2002).Google Scholar
[14]Kelarev, A. V., Graph Algebras and Automata (Marcel Dekker, New York, 2003).CrossRefGoogle Scholar
[15]Kelarev, A. V., Göbel, R., Rangaswamy, K. M., Schultz, P. and Vinsonhaler, C., Abelian Groups, Rings and Modules, Contemporary Mathematics 273 (American Mathematical Society, New York, 2001).CrossRefGoogle Scholar
[16]Kelarev, A. V., Watters, P. W. and Yearwood, J. L., ‘Rees matrix constructions for clustering of data’, J. Aust. Math. Soc. 87 (2009), 377393.CrossRefGoogle Scholar
[17]Kelarev, A. V., Yearwood, J. L. and Mammadov, M. A., ‘A formula for multiple classifiers in data mining based on Brandt semigroups’, Semigroup Forum 78(2) (2009), 293309.CrossRefGoogle Scholar
[18]Kelarev, A. V., Yearwood, J. L. and Vamplew, P. W., ‘A polynomial ring construction for classification of data’, Bull. Aust. Math. Soc. 79 (2009), 213225.CrossRefGoogle Scholar
[19]Kelarev, A. V., Yearwood, J. L., Watters, P., Wu, X. W., Abawajy, J. H. and Pan, L., ‘Internet security applications of the Munn rings’, Semigroup Forum 81(1) (2010), 162171.CrossRefGoogle Scholar
[20]Witten, I. H. and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques (Elsevier/Morgan Kaufman, Amsterdam, 2005).Google Scholar
[21]Yearwood, J., Webb, D., Ma, L., Vamplew, P., Ofoghi, B. and Kelarev, A., ‘Applying clustering and ensemble clustering approaches to phishing profiling’, Proc. 8th Australasian Data Mining Conf., Data Mining and Analytics 2009 (ausDM 2009), Melbourne, Australia, 1–4 December 2009, CRPIT, Vol. 101, pp. 25–34.Google Scholar