Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T15:28:05.700Z Has data issue: false hasContentIssue false

A one-step method for the numerical solution of ordinary non-linear second-order differential equations based upon lobatto four-point quadrature formula

Published online by Cambridge University Press:  09 April 2009

K. D. Sharma
Affiliation:
Computer Centre Indian Institute of Technology Hauz Khas, New Delhi-29, India
R. G. Gupta
Affiliation:
Department of Mathematics Indian Institute of Technology Hauz Khas, New Delhi-29, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes a one-step method besed upon the Lobatto four-point quadreture formula for the numerical integration of differential: y″(x) = f(x, y(x), y'(x)); y(x0)=y0, y'(x0)=y'0. The method has a local truncation error 0(h6) in y(x) and 0(h5) in y′(x). In the case of linear second-order differential equation, a stability criterion has been developed. Theoretical and computational comparisons of the new method existing method is discussed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Day, J. T., ‘A Runge-Kutta method for the numerical integration of the differential equation y″=f(χ у)’, ZAMM 45 (1965), 354356.CrossRefGoogle Scholar
[2]Day, J. T., ‘A one-step method for the numerical solution of second-order linear differential equations’, Math. Comp. 18 (1964), 664–68.CrossRefGoogle Scholar
[3]Day, J. T., ‘A one-step method for the numerical integration of the differential equation y″ = f(x)(χ)у + g(χ)’, Computer Journal, 7 (1964), 314–17.CrossRefGoogle Scholar
[4]Hildebrand, F. B., Introduction to Numerical Analusis (McGraw-Hill, New York (1956)).Google Scholar
[5]Hammer, P. C. and Hollingsworth, J. W., ‘Trapezoidal methods of approximating solution of differential equations’, MTAC 9 (1955), 9296.Google Scholar
[6]Henrici, P., Discrete variable methods in ordinary differential equations (John Wiley and Sons, Inc., New York (1962)).Google Scholar
[7]Jain, M. K. and Sharma, K. D., ‘Numerical solution of linear differential equations and Volterra's integral equation using Lobatto quadrature formula’, Computer Journal, 10 (1967) 101106.CrossRefGoogle Scholar
[8]Kuntzmann, J., ‘Neuere Entwicklungen der Method von Runge and Kutta’, ZAMM, 41 (1961) T 28–T 31.Google Scholar
[9]Korganoff, A., ‘Sur les formulas d'intégration numérique des equations différentielles donnant une approximation dordre élevé’, Chiffers 1 (1958), 171180.Google Scholar
[10]Morrison, D. and Stoller, L., ‘A method for numerical integration of ordinary differential equations’, MTAC 12 (1958), 269272.Google Scholar
[11]Rutishauser, H., ‘Ueber die Instabilitäte von Methoden zur Integration gewöhnlicher Differentialgleichugen’, ZAMP 3 (1952) 6574.Google Scholar
[12]Rutishauser, H., ‘Bemerkungen numerischen Integration gewöhnlicher Differentialgleichungen n-ter ordnung’, Num. Math. 2 (1960) 263–79.CrossRefGoogle Scholar
[13]Sharma, K. D., ‘One-step methods for the numerical solution for linear differential equations based upon Lobatto quadarture formulae’, Jour. Austr. Math. Soc. 11 (1970), 115128.CrossRefGoogle Scholar