Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T23:27:14.519Z Has data issue: false hasContentIssue false

On the reduction of positive quaternary quadratic forms

Published online by Cambridge University Press:  09 April 2009

M. J. Cohn
Affiliation:
University of AdelaideAdelaide SouthAustralia5001.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A fundamental region for the reduction of positive quaternary quadratic forms is exhibited. It is a convex polyhedral cone with twelve edges in the 10-dimensional space of quaternary quadratic forms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

Coxeter, H. S. M. (1951), ‘Extreme forms’, Canad. J. Math. 3, 391441.CrossRefGoogle Scholar
Minkowski, H. (1905), ‘Diskontinuitätsbereich für arithmetische Äquivalenz’, J. reine angew. Math. 129, 220274.CrossRefGoogle Scholar
Štogrin, M. I. (1974), ‘On the classification of 4-dimensional lattices according to Bravais, Voronoi and Delone’ (Russian), Dokl. Akad. Nauk SSSR 218, 528531.Google Scholar
Venkov, B. A. (1940), ‘On the reduction of positive quadratic forms’ (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 4, 3752.Google Scholar
Voronoi, G. (1907), ‘Sur quelques propriétés des formes quadratiques positives parfaites’, J. reine angew. Math. 133, 97178.Google Scholar
Voronoi, G. (1908), ‘Recherches sur les paralléloèdres primitifs’ (Part 1), J. reine angew. Math. 134, 198287.CrossRefGoogle Scholar
Voronoi, G. (1909), ‘Recherches sur les paralléloèdres primitifs’ (Part 2), J. reine angew. Math. 136, 67181.Google Scholar