Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T15:16:21.229Z Has data issue: false hasContentIssue false

On the iterative solution of linear operator equations with self-adjoint operators

Published online by Cambridge University Press:  09 April 2009

J. J. Koliha
Affiliation:
Department of Mathematics University of Melbourne
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we deal with a linear equation Au = f in a Hilbert space using a general iterative method with a constant iterative operator for the approximate solution. The method has been studied in many papers [1, 2, 4, 9, 13, 14] and thoroughly treated by Householder [3] for matrix equations and by Petryshyn [7] for operator equations in considerably general and unified manner.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Bialy, H., ‘Iterative Behandlung linearer Funktionalgleichungen’, Archive Rational Mech. Anal. 4 (1959), 166176.CrossRefGoogle Scholar
[2]Browder, F. E. and Petryshyn, W. V., ‘The solution by iteration of linear functional equations in Banach spaces’, Bull. Amer. Math. Soc. 72 (1966), 566570.CrossRefGoogle Scholar
[3]Householder, A. S., The Theory of Matrices in Numerical Analysis (Blaisdell Publ. Co. 1965).Google Scholar
[4]Keller, H. B., ‘On some iterative methods for solving elliptic difference equations’, Quart. Appl. Math. 16 (1958), 209226.CrossRefGoogle Scholar
[5]Krein, S. G. and Prozorovskaja, O. I., ‘An analogue of Seidel's method for operator equations’, Voronez. Gos. Univ., Trudy Sem. Funkcional. Anal. 5 (1957), 3538.Google Scholar
[6]Petryshyn, W. V., ‘The generalized overrelaxation method for the approximate solution of operator equations in Hilbert space’, J. Soc. Indust. Appl. Math. 10 (1962), 675690.CrossRefGoogle Scholar
[7]Petryshyn, W. V., ‘Direct and iterative methods for the solution of linear operator equations in Hilbert space’, Trans. Amer. Math. Soc. 105 (1962), 136175.Google Scholar
[8]Petryshyn, W. V., ‘On the generalized overrelaxation method for operation equations’, Proc. Amer. Math. Soc. 14 (1963), 917924.CrossRefGoogle Scholar
[9]Petryshyn, W. V., ‘On a general iterative method for the approximate solution of linear operator equations’, Math. Comp. 17 (1963), 110.CrossRefGoogle Scholar
[10]Petryshyn, W. V., ‘On extrapolated Jacobi or simultaneous displacement method in the solution of matrix and operator equations’, Math. Comp. 19 (1965), 3755.CrossRefGoogle Scholar
[11]Petryshyn, W. V., ‘On generalized inverses and on the uniform convergence of (I–βK)n with applications to iterative methods’, J. Math. Anal. Appl. 18 (1967), 417439.CrossRefGoogle Scholar
[12]Petryshyn, W. V., ‘Remarks on the generalized overrelaxation and the extrapolated Jacobi methods for operator equations in Hilbert space’, J. Math. Anal. Appl. 29 (1970), 558568.CrossRefGoogle Scholar
[13]Rall, L. B., ‘Error bounds for iterative solutions of Fredholm integral equation’, Pacific J. Math. 5 (1955), 977986.CrossRefGoogle Scholar
[14]Schönberg, M., ‘Sur la méthode d'itération de Wiarda et Bückner pour la résolution de l'équation de Fredholm I, II’, Acad. Roy. Belgique, Bull. Cl. Sci. 37 (1951), 11411156, 38 (1952), 154–167.Google Scholar
[15]Šisler, M., ‘Über die Konvergenzbeschleunigung verschiedener Iterationsverfahren’, Apl. Mat. 12 (1967), 255266.Google Scholar
[16]Taylor, A. E., Introduction to Functional Analysis (J. Wiley 1958)Google Scholar
[17]Weissinger, J., ‘Verailgemeinungen des Seidelschen Iterationsverfahrens’, Z. Angew. Math. Mech. 33 (1953), 155163.CrossRefGoogle Scholar