No CrossRef data available.
Article contents
On the Integral Modulus of Continuity of Fourier Series
Part of:
Harmonic analysis in one variable
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a wide class of sine trigonometric series we obtain an estimate for the integral modulus of continuity.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1988
References
[1]Aljančić, S., ‘Sur le module des séries de Fourier particuliéres et sur le module des séries de Fourier transformees par des types divers’, Bull. Acad. Serbe Sci. Arts 30 (6) (1967), 13–38.Google Scholar
[2]Izumi, M., and Izumi, S., ‘Modulus of continuity of functions defined by trigonometric series’, J. Math. Anal. Appl. 24 (1968), 564–581.CrossRefGoogle Scholar
[3]Ram, B., ‘On the integral modulus of continuity of Fourier series’, J. Analyse Math. 28 (1975), 78–85.CrossRefGoogle Scholar
[4]Ram, B., ‘Convergence of certain cosine sums in the metric space L’, Proc. Amer. Math. Soc. 66 (1977), 258–260.Google Scholar
[5]Teljakovsk, S. A., ‘The integral modulus of continuity of functions with quasiconvex Fourier coefficients’, Sibirsk. Mat. Ž. 11 (1970), 1140–1145.Google Scholar
[6]Teljakovski, S. A., ‘A sufficient condition of Sidon for the integrability of trigonometric series’, Mat. Zametki 14 (1973), 317–328.Google Scholar
[7]Timan, A. F., Theory of approximation of functions of ral variables (Hindustan Publishing Corporation, India, 1966).Google Scholar
You have
Access