Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T14:27:49.830Z Has data issue: false hasContentIssue false

On the Fourier transform of a compact semisimple Lie group

Part of: Lie groups

Published online by Cambridge University Press:  09 April 2009

N. J. Wildberger
Affiliation:
Department of Pure Mathematics, University of N. S. W.. P. O. Box 1, Kensington N. S. W.2033, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop a concrete Fourier transform on a compact Lie group by means of a symbol calculus, or *-product, on each integral co-adjoint orbit. These *-products are constructed by means of a moment map defined for each irreducible representation. We derive integral formulae for these algebra structures and discuss the relationship between two naturally occurring inner products on them. A global Kirillov-type character is obtained for each irreducible representation. The case of SU(2) is treated in some detail, where some interesting connections with classical spherical trigonometry are obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Arnal, D., Cahen, M. and Gutt, S., ‘Representatins of compact Lie groups and quantization by deformation’, Note à paraître à l'Académie des Sciences de Belgique (1988).CrossRefGoogle Scholar
[2]Arnal, D. and Cortet, J. C., ‘Nilpotent Fourier transform and applications’, Lett. Math. Phys. 9 (1985), 2534.CrossRefGoogle Scholar
[3]Arnal, D. and Ludwig, J., ‘La convexité de l'application moment d'un groupe de Lie’, J. Funct. Anal. 105 (1992), 256300.CrossRefGoogle Scholar
[4]Figueroa, H., Gracia-Bondía, J. M. and Várilly, J. C., ‘Moyal quantization with compact symmetry groups and noncommutative harmonic analysis’, J. Math. Phys. 31 (1990), 26642671.CrossRefGoogle Scholar
[5]Gutt, S., ‘An explicit *-product on the cotangent bundle of a Lie group’, Lett. Math. Phys. 7 (1983), 249258.CrossRefGoogle Scholar
[6]Helgason, S., Groups and geometric analysis (Academic Press, Orlando, 1984).Google Scholar
[7]Howe, R., Ratcliff, G. and Wildberger, N., ‘Symbol mappings for certain nilpotent groups’, in: Lie Group Representations III, Proceedings U. of Maryland, volume 1077 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1984) pp. 288320.CrossRefGoogle Scholar
[8]Khalgui, M. S., ‘Charactères des groupes de Lie’, J. Funct. Anal. 47 (1982), 6477.CrossRefGoogle Scholar
[9]Kirillov, A. A., ‘Unitary representations of nilpotent Lie groups’, Russian. Math. Surveys 17 (1962), 53103.CrossRefGoogle Scholar
[10]Knapp, A. and Speh, B., ‘Status of classification of irreducible unitary representations’, in: Harmonic Analysis Proc., Minneapolis, volume 908 of Lecture Notes in Mathematics (Springer, Berlin, 1982).Google Scholar
[11]Kostant, B., ‘Quantization and unitary representations’, in: Lectures in modern analysis III (ed. Taam, C. T.), volume 170 of Lecture Notes in Mathematics (Springer, Berlin, 1970) pp. 87208.Google Scholar
[12]Kostant, B., ‘On convexity, the Weyl group and the Iwasawa decomposition’, Ann. Sci. École Norm. Sup. 6 (1973), 413455.CrossRefGoogle Scholar
[13]Lichnerowicz, A., ‘Existence and invariance of twisted products on a symplectic manifold’, Lett. Math. Phys. 5 (1981), 117126.CrossRefGoogle Scholar
[14]Moreno, C. and Ortega-Navarro, P., ‘*-products on D'(C), S 2 and related spectral analysis’, Lett. Math. Phys. 7 (1983), 181193.CrossRefGoogle Scholar
[15]Sherman, T., ‘Fourier analysis on the sphere’, Trans. Amer. Math. Soc. 209 (1975), 131.CrossRefGoogle Scholar
[16]Souriau, J. M., Structure des systèmes dynamiques (Dunod, Paris, 1970).Google Scholar
[17]Todhunter, I., Spherical Trigonometry for the use of colleges and schools (Macmillan, London, 1914).Google Scholar
[18]Varadarajan, V., Lie algebras and their representations (Prentice-Hall, Englewood Cliffs, 1974).Google Scholar
[19]Várilly, J. C. and Gracia-Bondía, J. M., ‘The Moyal representation for spin’, Ann. Physics 190 (1989), 107148.CrossRefGoogle Scholar
[20]Vilenkin, N., Specialfunctions and the theory of group representations (Amer. Math. Society, Providence, 1968).CrossRefGoogle Scholar
[21]Vogan, D., ‘The unitary dual of GL(n) over an archimedean field’, Invent. Math. 83 (1986), 449505.CrossRefGoogle Scholar
[22]Wildberger, N., Quantization and harmonic analysis on nilpotent groups (Ph.D. Thesis, Yale University, 1983).Google Scholar
[23]Wildberger, N., ‘Convexity and unitary representations of nilpotent Lie groups’, Invent. Math. 98 (1989), 281292.CrossRefGoogle Scholar
[24]Wildberger, N., ‘The moment map of a Lie group representation’, Trans. Amer. Math. Soc. 330 (1992), 257268.CrossRefGoogle Scholar