Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:42:09.329Z Has data issue: false hasContentIssue false

On the Bitopological Extension of the Bing Metrization Theorem

Published online by Cambridge University Press:  09 April 2009

Salvador Romaguera
Affiliation:
Departmento de MatemáticaPura ETSICCP Universidad Politécnica46022 Valencia, Spain
Josefa Marín
Affiliation:
Departmento de MatemáticaPura ETSICCP Universidad Politécnica46022 Valencia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on a Junnila's paracompactness characterization we give a definition of pairwise paracompact space which permits us to prove that a bitopological space is quasi-metrizable if, and only if, it is a pairwise developable and pairwise paracompact space. An easy consequence of this result is the biquasi-metric form of the Morita metrization theorem. We also give some results on open mappings and strong quasi-metrics.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Bing, R. H., ‘Metrization of topological spaces’, Canad. J. Math. 3 (1951), 175186.Google Scholar
[2]Datta, M. C., ‘Paracompactness in bitopological spaces and an application to quasi-metric spaces’, Indian J. Pure Appl. Math. 8 (1977), 685690.Google Scholar
[3]Fletcher, P., Hoyle, H. B. III and Patty, C. W., ‘The comparison of topologies’, Duke Math. J. 36 (1969), 325331.Google Scholar
[4]Fox, R., On metrizability and quasi-metrizability (preprint).Google Scholar
[5]Gittings, R. F., ‘Finite-to-one open maps of generalized metric spaces’, Pacific J. Math. 59 (1975), 3341.Google Scholar
[6]Gutiérrez, A., On pairwise paracompact spaces (preprint).Google Scholar
[7]Junnila, H. J. K., Covering properties and quasi-uniformities of topological spaces (Thesis, Virginia Polytechnic Institute and State University, Blacksburg 1978).Google Scholar
[8]Konstandilaki-Savopoulou, Ch. and Reilly, I. L., ‘On Datta's bitopological paracompactness’, Indian J. Pure Appl. Math. 12 (1981), 799803.Google Scholar
[9]Künzi, H. P. A., Quasi-metrisierbare Räume (Thesis, Universität Bern, 1981).Google Scholar
[10]Künzi, H. P. A.On strongly quasi-metrizable spaces’, Arch. Math. (Basel) 41 (1983), 5763.CrossRefGoogle Scholar
[11]Lindgren, W. F. and Fletcher, P., ‘Locally quasi-uniform spaces with countable bases’, Duke Math. J. 41 (1974), 231240.Google Scholar
[12]Morita, K., ‘A condition for the metrizability of topological spaces and for n-dimensionality’, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 5 (1955), 3336.Google Scholar
[13]Raghavan, T. G. and Reilly, I. L., ‘Metrizability of quasi-metric spaces’, J. London Math. Soc. 15 (1977), 169172.CrossRefGoogle Scholar
[14]Stoltenberg, R. A., ‘On quasi-metric spaces’, Duke Math. J. 36 (1969), 6571.CrossRefGoogle Scholar