Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T06:53:03.612Z Has data issue: false hasContentIssue false

On the absence of cohomological finiteness in wreath products

Published online by Cambridge University Press:  09 April 2009

Gilbert Baumslag
Affiliation:
Department of Mathematics City College of New YorkConvent Avenue at 138th Street New York, NY 10031USA e-mail: [email protected]
Martin R. Bridson
Affiliation:
Mathematical Institute24–29 St. Giles Oxford OX1 3LBU. K. e-mail: [email protected]
Karl W. Gruenberg
Affiliation:
Mathematics Department Queen Mary and Westfield CollegeMile End Road London ElU.K. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The wreath product W = A ≀ T, where A ≠ 1, is of type F P2 if and only if T is finite and A is of type F P2.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Baumslag, G., ‘A remark on generalized free products’, Proc. American Math. Soc. 13 (1962), 5354.Google Scholar
[2]Baumslag, G., ‘Wreath products and finitely presented groups’, Math. Z. 75 (1960/1961), 2228.CrossRefGoogle Scholar
[3]Bestvina, M. and Brady, N., ‘Morse theory and finiteness properties of groups’, Invent. Math. 129 (1997), 445470.CrossRefGoogle Scholar
[4]Bieri, R., ‘Homological group theory’, Queen Mary College Mathematics Notes (1976).Google Scholar
[5]Bieri, R. and Strebel, R., ‘Valuations and finitely presented metabelian groups’, Proc. London Math. Soc. (3) 41 (1980), 439464.CrossRefGoogle Scholar
[6]Golovin, O. N., ‘Metabelian products of groups’, Mat. Sbornik 27 (1950), 427454. (English Translation:Google Scholar
AMS Translations 2 (1956)), 117132.Google Scholar
[7]Gruenberg, K. W., ‘On the residual properties of infinite soluble groups’, Proc. London Math. Soc. (3) 7 (1957), 2962.CrossRefGoogle Scholar
[8]Levi, F. W., ‘The commutator group of a free product’, J. Indian Math. Soc. 4 (1940), 136144.Google Scholar
[9]Śmelkin, A. L., ‘Wreath products and varieties of groups’, Izvestiya Akad. Nauk. SSSR Ser. Mat. 29 (1965), 149170 (in Russian).Google Scholar