No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
Let G be a finite group. If N denotes a normal subgroup of G, a subgroup S of G is called a supplement of N if we have G = SN. For every normal subgroup of G there is always the trivial supplement S = G. The existence of a non-trivial supplement is important for the extension theory, i.e., for the description of G by means of N and the factor group G/N. Generally, a supplement S is the more useful the smaller the intersection S ∩ N. If we have even S ∩ N = 1, then S is called a complement for N in G. In this case G is a splitting extension of N by S.