Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T23:03:54.875Z Has data issue: false hasContentIssue false

On normaliser preserving lattice isomorphisms between nilpotent groups

Published online by Cambridge University Press:  09 April 2009

D. W. Barnes
Affiliation:
Mathematics Department, University of Sydney.
G. E. Wall
Affiliation:
Mathematics Department, University of Sydney.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (G) denote the lattice of all subgroups of a group G. By an -isomorphism (lattice isomorphism) of G onto a group H, we mean an isomorphism of (G) onto (H). By an -isomorphism (normaliser preserving -isomorphism) of G onto H, we mean an -isomorphism ø such that (Aø) = (A)ø for all A ∈ (G). In this paper, we study certain properties of groups which remain invariant under -isomorphisms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1964

References

[1]Baer, R., The significance of the system of subgroups for the structure of the group, Amer. J. Math. 61 (1939), 144.CrossRefGoogle Scholar
[2]Blackburn, N., On a special class of ρ-groups, Acta Math. 100 (1958), 4592.CrossRefGoogle Scholar
[3]Higman, G., Lie ring methods in the theory of finite nilpotent groups, Proc. Internat. Congress of Mathematicians, Edinburgh, (1958), 307312.Google Scholar
[4]Iwasawa, K., Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Univ. Tokyo 4—3 (1941), 171199.Google Scholar
[5]Iwasawa, K., On the structure of infinite M-groups, Jap. J. Math. 18 (1943), 709728.CrossRefGoogle Scholar
[6]Lazard, M., Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), 101190.CrossRefGoogle Scholar
[7]Pekelis, A. S., Structural isomorphisms of locally nilpotent torsion-free groups, Uspehi mat. nauk 18 (1963), pp. 187190 of part 3(iii). (Russian).Google Scholar
[8]Pekelis, A. S. and Sadovskii, L. E., Projections of a metabelian torsion-free group, Doklady Akad. Nauk S.S.S.R. 151 (1963), 4244 (English translation in Soviet Math. 4 (1963), 918920).Google Scholar
[9]Rottländer, A., Nachweis der Existenz nicht-isomorpher Gruppen von gleicher Situation der Untergruppen, Math. Z. 28 (1928), 641653.CrossRefGoogle Scholar
[10]Šmel'kin, , Free polynilpotent groups, Doklady Akad. Nank S.S.S.R. 151 (1963), 7375 (English translation in Soviet Math. 4 (1963), 950–953).Google Scholar
[11]Spring, R. F., Lattice isomorphisms of finite non-abelian groups of exponent ρ, Proc. Amer. Math. Soc. 14 (1963), 407413.Google Scholar
[12]Suzuki, M., Structure of a Group and the Structure of its Lattice of Subgroups (Springer, Berlin, 1956).CrossRefGoogle Scholar
[13]Wiman, A., Über mit Diedergruppen verwandte ρ-Gruppen, Arkiv för Mat., Astron. och Fys. 33A (1946).Google Scholar