No CrossRef data available.
Article contents
On majorizing and cone-absolutely summing mappings
Published online by Cambridge University Press: 09 April 2009
Abstract
The notions of majorizing mappings and cone-absolutely summing mappings are studied in the locally convex Riesz space setting. It is shown that a locally convex Riesz space Y is an M-space in the sense of Jameson (1970) if and only if, for any locally convex space E, every continuous linear map from E into Y is majorizing. Another purpose of this note is to study the lattice properties of the vector space ℒl(X, Y) of cone-absolutely summing mappings from one locally convex Riesz space into another Y. It is shown that if Y is both locally and boundedly order complete, then ℒl(X, Y) is an l-ideal in Lb(X, Y). This improves a result of Krengel.
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 24 , Issue 2 , September 1977 , pp. 245 - 251
- Copyright
- Copyright © Australian Mathematical Society 1977