Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T20:13:06.534Z Has data issue: false hasContentIssue false

On indecomposable decompositions of CS-modules

Published online by Cambridge University Press:  09 April 2009

Nguyen V. Dung
Affiliation:
Institute of MathematicsP.O. Box 631 Bo Ho Hanoi, Vietnam
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that, over any ring R, the direct sum M = ⊕i∈IMi of uniform right R-modules Mi with local endomorphism rings is a CS-module if and only if every uniform submodule of M is essential in a direct summand of M and there does not exist an infinite sequence of non-isomorphic monomorphisms , with distinct in ∈ I. As a consequence, any CS-module which is a direct sum of submodules with local endomorphism rings has the exchange property.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Anderson, F. W. and Fuller, K. R., Rings and categories of modules, second edition, Graduate Texts in Math. 13 (Springer, Berlin, 1992).CrossRefGoogle Scholar
[2]Baba, Y. and Harada, M., ‘On almost M-projectives and almost M-injectives’, Tsukuba J. Math. 14 (1990), 5369.CrossRefGoogle Scholar
[3]Chatters, A. W. and Hajarnavis, C. R., ‘Rings in which every complement right ideal is a direct summand’, Quart. J. Math. Oxford Ser. (2) 28 (1977), 6180.CrossRefGoogle Scholar
[4]Clark, J. and Van Huynh, Dinh, ‘When is a self-injective semiperfect ring quasi-Frobenius’, J. Algebra 165 (1994), 531542.CrossRefGoogle Scholar
[5]Clark, J. and Wisbauer, R., ‘Σ-extending modules’, J. Pure Appl. Algebra 104 (1995), 1932.CrossRefGoogle Scholar
[6]Crawley, P. and Jónsson, B., ‘Refinements for infinite direct decompositions of algebraic systems’, Pacific J. Math. 14 (1964), 797855.CrossRefGoogle Scholar
[7]Dung, Nguyen V. and Smith, P. F., ‘Σ-CS-modules’, Comm. Algebra 22 (1994), 8393.CrossRefGoogle Scholar
[8]Dung, Nguyen V. and Smith, P. F., ‘Rings for which certain modules are CS’, J. Pure Appl. Algebra 102 (1995), 273287.CrossRefGoogle Scholar
[9]Goodearl, K. R., Ring theory (Marcel Dekker, New York, 1976).Google Scholar
[10]Harada, M., ‘On categories of indecomposable modules II’, Osaka J. Math. 8 (1971), 309321.Google Scholar
[11]Harada, M., Factor categories with applications to direct decomposition of modules, Lecture Notes in Pure and Applied Math. 88 (Marcel Dekker, New York, 1983).Google Scholar
[12]Kamal, M. A. and Müller, B. J., ‘The structure of extending modules over Noetherian rings’, Osaka J. Math. 25 (1988), 539551.Google Scholar
[13]Kato, T., ‘Self-injective rings’, Tôhoku Math. J. 19 (1967), 485495.CrossRefGoogle Scholar
[14]Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, London Math. Soc. Lecture Note Series 147 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[15]Oshiro, K., ‘Lifting modules, extending modules and their applications to QF-rings’, Hokkaido Math. J. 13 (1984), 310338.Google Scholar
[16]Osofsky, B. L., ‘A generalization of quasi-Frobenius rings’, J. Algebra 4 (1966), 373387.CrossRefGoogle Scholar
[17]Osofsky, B. L. and Smith, P. F., ‘Cyclic modules whose quotients have all complement submodules direct summands’, J. Algebra 139 (1991), 342354.CrossRefGoogle Scholar
[18]Vanaja, N., ‘Characterization of rings using extending and lifting modules’, in: Ring theory — Proceedings of the Denison conference 1992 (eds. Jain, S. K. and Rizvi, S. T.) (World Scientific, Singapore, 1993) pp. 329342.Google Scholar
[19]Warfield, R. B. Jr, ‘A Krull-Schmidt theorem for infinite sums of modules’, Proc. Amer. Math. Soc. 22 (1969), 460465.CrossRefGoogle Scholar
[20]Warfield, R. B. Jr, ‘Serial rings and finitely presented modules’, J. Algebra 37 (1975), 187222.CrossRefGoogle Scholar
[21]Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Reading, 1991).Google Scholar
[22]Zimmermann-Huisgen, B. and Zimmermann, W., ‘Classes of modules with the exchange property’, J. Algebra 88 (1984), 416434.CrossRefGoogle Scholar