Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T21:16:42.006Z Has data issue: false hasContentIssue false

On immersions of N-manifolds in codimension N − 1

Published online by Cambridge University Press:  09 April 2009

M. A. Aguilar
Affiliation:
Instituto de Matemáticas, Universidad Nacional, Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
G. Pastor
Affiliation:
Departamento de Matem´ticas, Centro de Investigación y, Estudios Avanzados del I.P.N., Apartado Postal 14-740, 07000 México, D.F., Mexico
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a simple proof, using only classical algebraic topology, of the following theorem of B. H. Li and F. P. Peterson. Any map from an N-manifold into a (2N − 1)-manifold is homotopic to an immersion.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Dyer, E., Cohomology theories, W. A. Benjamin, New York, 1969.Google Scholar
[2]Hirsch, M. W., ‘Immersions of manifolds’, Trans. Amer. Math. Soc. 93 (1959), 242276.CrossRefGoogle Scholar
[3]Holm, P., ‘Microbundles and S-duality’, Acta Math. 118 (1968), 271296.CrossRefGoogle Scholar
[4]Li, B. H. and Peterson, F. P., ‘On immersions of k-manifolds in (2k − 1)-manifolds’, Proc. Amer. Math. Soc. 83 (1981), 159162.Google Scholar
[5]Steenrod, N., The topology of fiber bundles, Princeton University Press, Princeton, N. J., 1951.CrossRefGoogle Scholar
[6]Whitney, H., ‘Differentiable manifolds’, Ann. of Math. 37 (1936), 645680.CrossRefGoogle Scholar