Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T23:01:43.049Z Has data issue: false hasContentIssue false

On generalizations of projectivity for modules over Dedekind domains

Published online by Cambridge University Press:  09 April 2009

Jutta Hausen
Affiliation:
Department of Mathematics, University of Houston, Central Campus Houston, Texas 77004, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A module M over a ring R is κ-projective, κ a cardinal, if M is projective relative to all exact sequence of R-modules 0 → A → B → C → 0 such that C has a generating set of cardinality less than κ. A structure theorem for κ-projective modules over Dedekind domains is proven, and the κ-projectivity of M is related to properties of ExtR (M, ⊕ R). Using results of S. Chase, S. Shelah and P. Eklof, the existence of non-projective и1-projective modules is shown to undecidable, while both the Continuum Hypothesis and its denial (Plus Martin's Axiom) imply the existence of a reduced И0-projective Z-module which is not free.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

Anderson, F. W. and Fuller, K. R. (1974), Rings and categories of modules (Springer-Verlag, New York).CrossRefGoogle Scholar
Cartan, H. and Eilenberg, S. (1956), Homological algebra (Princeton University Press, Princeton, New JerseyGoogle Scholar
Chase, S. (1962), ‘Locally free modules and a problem of Whitehead’, Illinois J. Math. 6, 682699.CrossRefGoogle Scholar
Chase, S. (1963), ‘On group extensions and a problem of J. H. C. Whitehead’, Topics in abelian groups, edited by Irwin, J. M. and Walker, E. A., pp. 173193 (Scott, Foresman, Chicago).Google Scholar
Eklof, P. C. (1980), ‘Set theoretic methods in homological algebra and abelian groups’, Proceedings, 18e session du Séminaire de mathématiques supérieures, Groupes abéliens, modules et sujets connexes, pp. 7117. (Les Presses de l' Université de Montréal, Montréal).Google Scholar
Eklof, P. C. and Huber, M. (1979), ‘Abelian group extensions and the axiom of constructibility’, Comment. Math. Helv. 54, 440457.CrossRefGoogle Scholar
Feigelstock, S. (1977), ‘On modules over Dedekind rings’, Acta. Sci. Math. (Szeged) 39, 225263.Google Scholar
Griffith, P. (1968), ‘Separability of torsion free groups and a problem of J. H. C. Whitehead’, Illinois J. Math. 12, 654659.CrossRefGoogle Scholar
Griffith, P. (1970), Infinite abelian group theory (University of Chicago Press, Chicago).Google Scholar
Hiremath, V. A. (1978), ‘Finitely projective modules over a Dedekind domain’, J. Austral. Math. Soc. Ser. A 26, 330336.CrossRefGoogle Scholar
Kaplansky, I. (1952), ‘Modules over Dedekind rings and valuation rings’, Trans. Amer. Math. Soc. 71, 327340.CrossRefGoogle Scholar
Nunke, R. J. (1959), ‘Modules of extensions over Dedekind rings’, Illinois J. Math. 3, 222241.CrossRefGoogle Scholar
Shelah, S. (1974), “Infinite abelian groups, Whitehead problem and some constructions”, Israel J. Math. 18, 243356.CrossRefGoogle Scholar
Shelah, S. (1979), “On uncountable abelian groups”, Israel J. Math. 32, 311330.CrossRefGoogle Scholar