Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T14:05:43.029Z Has data issue: false hasContentIssue false

On flag varieties, hyperplane complements and Springer representations of Weyl groups

Published online by Cambridge University Press:  09 April 2009

G. I. Lehrer
Affiliation:
University of SydneySydney, NSW 2006, Australia
T. Shoji
Affiliation:
Science University of TokyoNoda Chiba 278 Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a connected reductive linear algebraic group over the complex numbers. For any element A of the Lie algebra of G, there is an action of the Weyl group W on the cohomology Hi(BA) of the subvariety BA (see below for the definition) of the flag variety of G. We study this action and prove an inequality for the multiplicity of the Weyl group representations which occur ((4.8) below). This involves geometric data. This inequality is applied to determine the multiplicity of the reflection representation of W when A is a nilpotent element of “parabolic type”. In particular this multiplicity is related to the geometry of the corresponding hyperplane complement.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Alvis, D. and Lusztig, G., ‘On Springer's correspondence for simple groups of type En (n = 6, 7, 8),’ Math. Proc. Cambridge Philos. Soc. 92 (1982), 6578.CrossRefGoogle Scholar
[2]Borho, W. and MacPherson, R., ‘Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes,’ C. R. Acad. Sci. Paris A 292 (1981), 707710.Google Scholar
[3]Borho, W. and MacPherson, R., ‘Partial resolutions of nilpotent varieties,’ Astérisque 101–102 (1983), 2374.Google Scholar
[4]Brieskorn, E., Sur les groupes de tresses (d'après V. I. Arnold), Sém. Bourbaki 1971/1972, Lecture Notes in Math., vol. 317, (Springer-Verlag, Berlin, 1973).Google Scholar
[5]Deligne, P. and Lusztig, G., ‘Representations of reductive groups over finite fields,’ Ann. of Math. 103 (1976), 103161.CrossRefGoogle Scholar
[6]De Concini, C. and Procesi, C., ‘Symmetric functions, conjugacy classes and the flag variety,’ Invent. Math. 64 (1981), 203219.CrossRefGoogle Scholar
[7]Fary, I., ‘Cohomologie des variétés algébriques,’ Ann. of Math. 65 (1957), 2161.CrossRefGoogle Scholar
[8]Godement, R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964.Google Scholar
[9]Hartshorne, R., Residues and duality, Lecture Notes in Math., vol. 20, (Springer-Verlag, 1966).CrossRefGoogle Scholar
[10]Kazhdan, D., ‘Proof of Springer's hypothesis,’ Israel J. Math. 28 (1977), 272286.CrossRefGoogle Scholar
[11]Kraft, H., ‘Conjugacy classes and Weyl group representations,’ Proc. of the Conférence Internationale, Torún, Pologne, 1980, Astérisque 87–88 (1981), 195205.Google Scholar
[12]Lehrer, G. I., ‘On the Poincaré series associated with Coxeter group actions on complements of hyperplanes,’ J. London Math. Soc. (2) 36 (1987), 275294.CrossRefGoogle Scholar
[13]Lusztig, G., ‘Green polynomials and singularities of nilpotent classes,’ Adv. in Math. 42 (1981), 169178.CrossRefGoogle Scholar
[14]Lusztig, G., ‘Characters of reductive groups over a finite field,’ Ann. of Math. Studies 107 (Princeton Univ. Press, 1984).Google Scholar
[15]Milne, J. S., Étale cohomology, Princeton Univ. Press (Princeton, N.J., 1980).Google Scholar
[16]Orlik, P. and Solomon, L., ‘Combinatorics and the topology of complements of hyperplanes,’ Invent. Math. 56 (1980), 167189.CrossRefGoogle Scholar
[17]Orlik, P. and Solomon, L., ‘Coxeter arrangements,’ in Proc. Sympos. Pure Math. 40 (1983), 167189.Google Scholar
[18]Shoji, T., ‘On the Green polynomials of classical groups,’ Invent. Math. 74 (1983), 239267.CrossRefGoogle Scholar
[19]Shoji, T., ‘Geometry of orbits and Springer correspondence,’ to appear in Proc. Special Period on Unipotent Orbits etc., Astérisque 1988.Google Scholar
[20]Solomon, L., ‘Invariants of finite reflection groups,’ Nagoya Math J. 22 (1963), 5764.CrossRefGoogle Scholar
[21]Spaltenstein, N., Classes unipotents et sous groupes de Borel, Lecture Notes in Math., vol. 942 (Springer-Verlag, 1982).CrossRefGoogle Scholar
[22]Spaltenstein, N., ‘On the generalized Springer correspondence for exceptional groups,’ in Algebraic groups and related topics, Adv. Studies in Pure Math. 6, pp. 317338, (Kinokuniya and North-Holland, 1985).Google Scholar
[23]Spaltenstein, N., Problems in algebraic groups, Report of Katata Conference, p. 19 (Osaka 1983).Google Scholar
[24]Spaltenstein, N., ‘On Springer representations of Weyl groups containing – 1,’ Arch. Math. (Basel) 44 (1985), 2628.CrossRefGoogle Scholar
[25]Springer, T. A., ‘Trigonometric sums, Green functions of finite groups and representations of Weyl groups,’ Invent. Math. 36 (1976), 173207.CrossRefGoogle Scholar
[26]Springer, T. A., ‘A construction of representations of Weyl groups,’ Invent. Math. 44 (1978), 2979–293.CrossRefGoogle Scholar
[27]Springer, T. A. and Steinberg, R., ‘Conjugacy classes,’ Seminar on algebraic groups and related finite groups, Lecture Notes in Math., vol. 131, pp. 167226 (Springer, 1970).CrossRefGoogle Scholar
[28]Tanisaki, T., ‘Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups,’ Tôhoku Math. J. 34 (1982), 575587.CrossRefGoogle Scholar