We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We give sufficient conditions for an analytic function from Rn to R to be analytically equivalent to a rational regular function.
[1]Bochnak, J., Kucharz, W. and Shiota, M., ‘On equivalence of ideals of real global analytic functions and the 17th Hilbert problem’, Invent. Math.63 (1981), 403–421.CrossRefGoogle Scholar
[2]
[2]Bochnak, J., Kucharz, W., and Shiota, M., ‘On algebraicity of global real analytic sets and functions’, Invent. Math.70 (1982), 115–156.CrossRefGoogle Scholar
[4]Shiota, M., ‘Equivalence of differentiable mappings and analytic mappings’, Inst. Hautes Etudes Sci. Publ. Math.54 (1981), 37–122.CrossRefGoogle Scholar
[5]
[5]Shiota, M., ‘Equivalence of differentiable functions, rational functions and polynomials’, Ann. Inst. Fourier (Grenoble)32 (1982), 167–204.CrossRefGoogle Scholar
[6]
[6]Thom, R., ‘L'équivalence d'une fonction différentiable et d'un polynôme’, Topology3, Suppl. 2 (1965), 297–307.CrossRefGoogle Scholar
[7]
[7]Tougeron, J. Cl., Idéaux de fonctions différentiables, (Springer, Berlin-Heidelberg-New York, 1972).CrossRefGoogle Scholar