Article contents
On digital distribution in some integer sequences
Published online by Cambridge University Press: 09 April 2009
Extract
Although the harmonic series diverges, there is a sense in which it “nearly converges”. Let N denote the set of all positive integers, and S a subset of N. Then there are various sequences S for which converges, but for which the “omitted sequence” N–S is, in intuitive sense, sparse, compared with N. For example, Apostol [1] (page 384) quotes, without proof the case where S is the set of all Positive integers whose decimal representation does not invlove the digit zero (e.g. 7∈S but 101 ∉ S); then (1) converges, with T < 90.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1965
References
- 7
- Cited by