Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T03:32:52.558Z Has data issue: false hasContentIssue false

On diameters of orbits of compact groups in unitary representations

Published online by Cambridge University Press:  09 April 2009

Annabel Deutsch
Affiliation:
9 May bank Close Lichfield Shropshire WS14 9UJ, UK
Alain Valette
Affiliation:
Institut de MathématiquesRue Emile Argand 11 CH-2007 NeuchâtelSwitzerland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a compact group G, we compute the Kazhdan constants κ(G, G) obtained by taking G itself as a generating subset. We get κ(G, G) = if G is finite of order n, and κ(G, G) = if G is infinite.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Bacher, R. and de la Harpe, P., ‘Exact values of Kazhdan constants for some finite groups’, J. Algebra 163 (1994), 495515.CrossRefGoogle Scholar
[2]Burger, M., ‘Kazhdan constants for SL(3, Z)’, J. Reine Angew. Math. 43 (1991), 3667.Google Scholar
[3]Cartwright, D. I., Mlotkowski, W. and Steger, T., ‘Property (T) and Ã2-groups’, Ann. Inst. Fourier (Grenoble) 44 (1993), 213248.CrossRefGoogle Scholar
[4]Deutsch, A., Kazhdan's property (T) and related properties of locally compact and discrete groups (Ph.D. Thesis, Univ. of Edinburgh, 1992).Google Scholar
[5]Deutsch, A., ‘Kazhadan constants for the circle’, Bull. London Math. Soc. 26 (1994), 459464.CrossRefGoogle Scholar
[6]de la Harpe, P., Robertson, A. G. and Valette, A., ‘On the spectrum of the sum of generators for a finitely generated group’, Israel J. Math. 81 (1993), 6596.CrossRefGoogle Scholar
[7]de la Harpe, P. and Valette, A., La propriété (T) de Kazhdan pour les groups localement compacts, Astérisque 175 (Soc. Math. France, Paris, 1989).Google Scholar