Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T20:09:27.328Z Has data issue: false hasContentIssue false

On closed graph and implicit function theorems for multifunctions

Published online by Cambridge University Press:  09 April 2009

C. C. Chou
Affiliation:
Université de Perpignan, France
L. R. Huang
Affiliation:
South China Normal UniversityGuangzhou, China
K. F. Ng
Affiliation:
The Chinese University of Hong KongHong Kong e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give several general implicit function and closed graph theorems for ser-valued functions. Let Z be a normed space, X, Y metric spaces with X complete. Let f: X ⇉ Z, F: X × Y ⇉ Z be multifunctions with z0 ∈ f(x0) ∩ F(x0, y0) such that f is open at (x0, y0) and f ‘approximates’ F in an appropriate sense. Suppose that f−1(z) is closed, F(x, y) is compact for each x, y and z and suppose that F(x0, ·) is lower semi-continuous at y0. Then F(·, y) is of closed graph ‘locally’, is open at x0, and there exists a function x(·) with x(y)x0 for yy0 such that z0F(x(y), (y)) for all y near y0. A more general form dealing with the non-linear rate situation is also established.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Aubin, J.-P. and Frankowska, H., Set valued analysis (Birkhäuser, Boston, 1990).Google Scholar
[2]Azé, D., ‘An inversion theorem for set-valued maps’, Bull. Austral. Math. Soc. 37 (1988), 411414.CrossRefGoogle Scholar
[3]Azé, D., Chou, C. C. and Penot, J. P., ‘Subtraction theorems and approximate openness for multifunctions: topological and infinitesimal view-points’, preprint.Google Scholar
[4]Borwein, J. M., ‘Stability and regular points of inequality systems’, J. Optim. Theory Appl. 48 (1986), 952.CrossRefGoogle Scholar
[5]Borwein, J. M. and Zhang, D. M., ‘Verifiable necessary and sufficient condition for openness and regularity of set-valued maps’, J. Math. Anal. Appl. 134 (1988), 441459.CrossRefGoogle Scholar
[6]Chou, C. C., ‘Sur quelques théorèmes d'inversion locale’, C. R. Acad. Sci. Paris, Sér. I Math. 316 (1993), 1922.Google Scholar
[7]Dolecki, S., ‘Semicontinuity in constrained optimization, part I. 1. Metric spaces’, Control Cybernet. 7 (1978), 515.Google Scholar
[8]Dolecki, S., ‘Semicontinuity in constrained optimization, part Ib. 1. Normed spaces’, Control Cybernet. 7 (1978), 1726.Google Scholar
[9]Frankowska, H., ‘An open mapping principle for set-valued maps’, J. Math. Anal. Appl. 127 (1987), 172180.CrossRefGoogle Scholar
[10]Frankowska, H., ‘Some inverse mapping theorems’, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 183234.CrossRefGoogle Scholar
[11]Liusternik, L. A. and Sobolev, V. J., Elements of functional analaysis (Unger, New York, 1961).Google Scholar
[12]Luenberger, D., Optimization by vector spaces methods (Wiley, New York, 1968).Google Scholar
[13]Ng, K. F., ‘An open mapping theorem’, Math. Proc. Cambridge Philos. Soc. 74 (1973), 6163.CrossRefGoogle Scholar
[14]Ng, K. F., ‘An inequality implicit function theorem’, J. Austral. Math. Soc. (Series A) 44 (1988), 146150.CrossRefGoogle Scholar
[15]Penot, J.-P., ‘Inversion à droite d'applications non linearires et applications’, C. R. Acad. Sci. Paris, Sér. I Math. 290 (1980), 9971000.Google Scholar
[16]Penot, J.-P., ‘Open mappings theorems and linearization stability’, Numer. Funct. Anal. Optim. 8 (1985), 2135.CrossRefGoogle Scholar
[17]Penot, J.-P., ‘Metric regulariy, openness and Lipschitzian behavior of multifunctions’, Nonlinear Anal. 13 (1989), 629643.CrossRefGoogle Scholar
[18]Robinson, S. M., ‘Normed convex processes’, Trans. Amer. Math. Soc. 174 (1972), 127140.CrossRefGoogle Scholar
[19]Robinson, S. M., ‘Regularity and stability for convex multivalued functions’, Math. Oper. Res. 1 (1976), 130143.CrossRefGoogle Scholar
[20]Robinson, S. M., ‘Stability theory for systems of inequalitys. part II: differentiable non-linear systems’, SIAM J. Numer. Anal. 13 (1976), 497513.CrossRefGoogle Scholar
[21]Robinson, S. M., ‘An implicit function theorem for a class of nonsmooth functions’, Math. Oper. Res. 16 (1991), 292309.CrossRefGoogle Scholar
[22]Ursescu, C., ‘Multifunctions with closed convex graphs’, Czechoslovak Math. J. 25 (1975), 438449.CrossRefGoogle Scholar
[23]Ursescu, C., ‘Tangency and openness of multifunctions in Banach spaces’, An. Ştünţ. Univ. “Al. I. Cuza”, lasi Sect. I. a Mat. (N.S.) 34 (1988), 221226.Google Scholar
[24]Zowe, J. and Kureyusz, S., ‘Regularity and stabilitiy for the mathematical programming problem in Banach spaces’, Appl. Math. Optim. 5 (1979), 4962.CrossRefGoogle Scholar