Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T11:57:52.771Z Has data issue: false hasContentIssue false

On Banach-Mazur compacta

Published online by Cambridge University Press:  09 April 2009

Sergei M. Ageev
Affiliation:
Department of Mathematics Brest Sates UniversityBrest 224665Belorussia e-mail: [email protected]
Duŝan Repovŝ
Affiliation:
Department of Mathematics University of LjubljanaLjubljana 1001Slovenia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study Banach-Mazur compacta Q(n), that is, the sets of all isometry classes of n-dimensional Banach spaces topologized by the Banach-Mazur metric. Our main result is that Q(2) is homeomorphic to the compactification of a Hilbert cube manifold by a point, for we prove that Qg(2) = Q(2) / {Eucl.} is a Hilbert cube manifold. As a corollary it follows that Q(2) is not homogeneous.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Abels, H., ‘Paraellizability of proper actions, gloabl K-slices and maximal compact subgroups’, Math. Ann. 212 (1974), 119.CrossRefGoogle Scholar
[2]Abels, H., ‘Universal proper G-spaces’, Math. Z. 159 (1978), 143158.CrossRefGoogle Scholar
[3]Ageev, S. M., ‘Theory of extensors for non-compact Lie groups’, in: Abstr. II Congr. Iberoamer. Topol. Appl., (Math. Inst. UNAM Morelia, Mexico, 1997) p. 11.Google Scholar
[4]Ageev, S. M. and Bogatiĭ, S. A.On nonhomeomorphicity of the Banach-Mazur compactum to the Bilbert cube’, Uspehi Mat. Nauk 53 (1998), 209210;Google Scholar
English tranlsation: Russian Math. Surveys 53 (1998), 205207.CrossRefGoogle Scholar
[5]Ageev, S. M., Bogatiĭ, S. A. and Fabel, P., ‘The Banach-Mazur compactum Q(n) is an AR’, Vestnik MGU Mat. Meh. 1 (1998), 1113;Google Scholar
English translation: Moscow Univ. Math. Bull. 53 (1998), 1012.Google Scholar
[6]Ageev, S. M., Bogatiĭ, S. A., Fable, P. and Repovš, P., ‘Extensors of noncompact Lie groups’, Dokl. Ross. Akad. Nauk 362 (1998), 151154;Google Scholar
English translation: Dokl. Math. 58 (1998), 190193.Google Scholar
[7]Ageev, S. M. and Repovš, D., ‘Theory of equivariant absoulte extensors for noncompact Lie groups’, preprint, University of Ljubljana, 1997.Google Scholar
[8]Antonyan, S. A., ‘Retraction properties of an orbit space’, Mat. Sbor. 137 (1988), 300318;Google Scholar
English translation: Math. USSR Sbor. 65 (1990), 305321.CrossRefGoogle Scholar
[9]Aubin, J.-P. and Frankowska, H., Set-valued ananlysis (Birkhäuser, Basel, 1990).Google Scholar
[10]Bing, R. H., ‘Partitioning continuous curves’, Bull. Amer. Math. Soc. 58 (1952), 536556.CrossRefGoogle Scholar
[11]Curtis, D. W., ‘Some theorems and examples on local equiconnectedness and its specializations’, Fund. Math. 72 (1971), 101113.CrossRefGoogle Scholar
[12]Dowker, C. H., ‘Homotopy extension theorems’, Proc. London Math. Soc. 6 (1956), 100116.CrossRefGoogle Scholar
[13]Engelking, R., General topology (Heldermann, Berlin, 1989).Google Scholar
[14]Fabel, P., ‘The Banach-Mazur compactum Q(2) is an AR’, in: Abstracts Borksuk-Kuratowski session (Warsaw 1996) p. 5.Google Scholar
[15]Haver, W. E., ‘Locally contractible spaces that are absolute neighbourhood retracts’, Proc. Amer. Math. Soc. 40 (1973), 280284.CrossRefGoogle Scholar
[16]Jaworowski, J., ‘Summetry products of ANR's’, Math. Ann. 192 (1971), 173176.CrossRefGoogle Scholar
[17]John, F., Extremum problems with inequalities as subsidiary conditions, Studies and Essays, Courant Anniversary Volume (Interscience, New York 1948) pp. 187204.Google Scholar
[18]Mardeŝić, S., ‘Approximate polyhedra, resolutions of maps and shape fibrations’, Fund. Math. 114 (1981), 5378.CrossRefGoogle Scholar
[19]van Mill, J., Infinite-dimensional topology: prerequisites and introduction, North-Holland Math. Library 43 (North-Holland, Amsterdam, 1989).Google Scholar
[20]Murayama, M., ‘On G-ANR's and their G-homotopy types’, Osaka J. Math. 20 (1983), 479512.Google Scholar
[21]Palais, R. S., ‘The classification of G-spaces’, Mem. Amer. Math. Soc. 36 (1960).Google Scholar
[22]Palais, R. S., ‘On the existence of slices for actions of non-compact Lie groups’, Ann. of Math. (2) 73 (1961), 295323.CrossRefGoogle Scholar
[23]Repovš, D., ‘Geometric topology of Banach-Mazur compacta’, in: General and geometric topology (Japanese) (Kyoto, 1998) Surikaisekikebkyusho Kokyuroku 1074 (1999), 89101.Google Scholar
[24]Repovš, D. and Semenov, P. V., Continuous selections of multivalued mappings (Kluwer, Dordrecht, 1998).CrossRefGoogle Scholar
[25]Whitehead, J. H. C., ‘Note on a theorem due to Borsuk’, Bull. Amer. Math. Soc. 54 (1948), 11251132.CrossRefGoogle Scholar