No CrossRef data available.
Article contents
On a class of radicals of rings
Published online by Cambridge University Press: 09 April 2009
Abstract
Let λ be a property that a lattice of submodules of a module may possess and which is preserved under taking sublattices and isomorphic images of such lattices and is satisfied by the lattice of subgroups of the group of integer numbers. For a ring R the lower radical Λ generated by the class λ(R) of R-modules whose lattice of submodules possesses the property λ is considered. This radical determines the unique ideal Λ (R) of R, called the λ-radical of R. We show that Λ is a Hoehnke radical of rings. Although generally Λ is not a Kurosh-Amitsur radical, it has the ADS-property and the class of Λ-radical rings is closed under extensions. We prove that Λ (Mn (R)) ⊆ Mn (Λ(R)) and give some illustrative examples.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1995