Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T04:18:53.481Z Has data issue: false hasContentIssue false

On a class of non-linear functional equations connected with modular functions

Published online by Cambridge University Press:  09 April 2009

K. Mahler
Affiliation:
Department of Mathematics Research School of Physical SciencesAustralian National University Canberra, A.C.T. 2600 Australia.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p be a prime. This paper deals with solutions of functional equations in either formal Laurent series or in analytic functions. Examples connected to special modular functions are considered.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

Fricke, R., (1922), Elliptische Funktionen, Teil 2.Google Scholar
Mahler, K., (1929), ‘Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen’, Math. Annalen 101, 342366.CrossRefGoogle Scholar
Mahler, K., (1930a), ‘Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen’, Math. Annalen, 103, 573587.CrossRefGoogle Scholar
Mahler, K., (1930b), ‘Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen’, Math. Z. 32, 545585.CrossRefGoogle Scholar
Siegel, C. L., (1964), ‘Bestimmung der elliptischen Modulfunktion durch eine Transformationsgleichung’, Abh. Sem. Univ. Hamburg 27, 3238.CrossRefGoogle Scholar
Weber, H., (1908), Lehrbuch der Algebra, Band 3.Google Scholar