Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T16:19:29.752Z Has data issue: false hasContentIssue false

The odd-local subgroups of the Monster

Published online by Cambridge University Press:  09 April 2009

Robert A. Wilson
Affiliation:
Department of Pure Mathematics and Mathematical Statistics University of Cambridge16 Mill Lane Cambridge CB2 1SBEngland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine all conjugacy classes of maximal p-local subgroups of the Monster for p ≠ 2.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Butler, G., ‘The maximal subgroups of the sporadic simple group of Held’, J. Algebra 69 (1981), 6781.CrossRefGoogle Scholar
[2]Conway, J. H., ‘A simple construction for the Fischer-Griess Monster group’, Invent. Math. 79 (1985), 513540.CrossRefGoogle Scholar
[3]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., An ATLAS of finite groups (Oxford Univ. Press, London and New York, 1985).Google Scholar
[4]Norton, S. P. and Wilson, R. A., ‘The maximal subgroups of the Harada-Norton group’, J. Algebra 103 (1986), 362376.CrossRefGoogle Scholar
[5]Piper, F. C., ‘On elations of finite projective spaces of odd order’, J. London Math. Soc. 41 (1966), 641648.CrossRefGoogle Scholar
[6]Wilson, R. A., ‘The quaternionic lattice for 2G4 (4) and its maximal subgroups’, J. Algebra 77 (1982), 449466.CrossRefGoogle Scholar
[7]Wilson, R. A., ‘The complex Leech lattice and maximal subgroups of the Suzuki group’, J. Algebra 84 (1983), 151188.CrossRefGoogle Scholar
[8]Wilson, R. A., ‘The maximal subgroups of Conway's group Co1’, J. Algebra 85 (1983), 144165.CrossRefGoogle Scholar
[9]Wilson, R. A., ‘On maximal subgroups of the Fischer group Fi 22’, Math. Proc. Cambridge Philos. Soc. 95 (1984), 197222.CrossRefGoogle Scholar
[10]Wilson, R. A., ‘Some subgroups of the Baby Monster’, Invent. Math., to appear.Google Scholar
[11]Wilson, R. A., ‘Some subgroups of the Thompson group’, J. Austral. Math. Soc. 44 (1988), 1732.CrossRefGoogle Scholar
[12]Wilson, R. A., ‘The local subgroups of the Fischer groups’, submitted to J. London Math. Soc.Google Scholar