Article contents
A note on central group extensions
Published online by Cambridge University Press: 09 April 2009
Extract
If A, B, H, K are abelian group and φ: A → H and ψ: B → K are epimorphisms, then a given central group extension G of H by K is not necessarily a homomorphic image of a group extension of A by B. Take for instance A = Z(2), B = Z ⊕ Z, H = Z(2), K = V4 (Klein's fourgroup). Then the dihedral group D8 is a central extension of H by K but it is not a homomorphic image of Z ⊕ Z ⊕ Z(2), the only group extension of A by the free group B.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1973
References
- 1
- Cited by