Published online by Cambridge University Press: 09 April 2009
In a paper [1] of the same title Barnes considered the problem of finding an upper bound for the infimum m+(f) of the non-negative values1 of an indefinite quadratic form f in n variables, of given determinant det(f) ≠ 0 and of signature s. In particular it was announced (and later proved — see [2]) that m+(f) ≦ (16/5)+ for ternary quadratic forms of determinant 1 and signature — 1. A simple consequence of this result is that m+(f) ≦ (256/135)+ for quaternary quadratic forms of determinant — 1 and signature — 2.