Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T06:30:18.753Z Has data issue: false hasContentIssue false

Non-linear differential equations with transcendental meromorphic solutions

Published online by Cambridge University Press:  09 April 2009

Katsuya Ishizaki
Affiliation:
Department of Mathematics Nippon Institute of Technology4-1 Gakuendai Miyashiro Minanisaitama Saitama 345-8501Japan e-mail: [email protected]
Yuefei Wang
Affiliation:
Institute of Mathematics, AMSS Chinese Academy of Sciences Beijing 100080China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we treat two non-linear differential equations which come from complex dynamics theory. We give a complete classification of the equations when they possess transcendental meromorphic solutions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Bank, S. B. and Kaufman, R. P., ‘On the meromorphic solutions of first-order differential equations’, Comment. Math. Helv. 51 (1976), 289299.CrossRefGoogle Scholar
[2]Bank, S. B. and Kaufman, R. P., ‘On the growth of meromorphic solutions of the differential equation (y′)m= R(z, y)’, Ada Math. 144 (1980), 223248.Google Scholar
[3]Bank, S. B., Gundersen, G. G. and Lame, I., ‘Meromorphic solutions of the Riccati differential equation’, Ann. Acad. Sci. Fenn. Ser A I Math. 6 (1981). 369398.Google Scholar
[4]Beardon, A., Iteration of rational functions (Springer, New York, 1991).CrossRefGoogle Scholar
[5]Bergweiler, W., ‘Newton's method and a class of meromorphic functions without wandering domains’, Ergodic Theory Dynamical Systems 13 (1993), 231247.CrossRefGoogle Scholar
[6]Bergweiler, W., ‘Iteration of meromorphic functions’, Bull. Amer Math. Soc. 29 (1993), 151188.CrossRefGoogle Scholar
[7]Bergweiler, W., ‘On a theorem of Gol'dberg concerning meromorphic solutions of algebraic differential equations’, Complex Variables Theory Appl. 37 (1998), 9396.Google Scholar
[8]Bergweiler, W. and Tergiane, N., ‘Weakly repelling fixpoints and the connectivity of wandering domains’, Trans. Amer. Math. Soc. 348 (1996), 112.CrossRefGoogle Scholar
[9]Bergweiler, W. and Tergiane, N., ‘On the zeros of solutions of linear differential equations of the second order’, J. London Math. Soc. (2) 58 (1998), 311330.CrossRefGoogle Scholar
[10]Gol'dberg, A. A., ‘On single-valued solutions of first order differential equations’ (Russian), Ukrain. Math. Zh. 8 (1956), 254261.Google Scholar
[11]Hayman, W. K., Meromorphic functions (Clarendon Press, Oxford, 1964).Google Scholar
[12]Hayman, W. K. and Miles, J., ‘On the growth of a meromorphic functions and its derivatives’, Complex Variables Theory Appl. 12 (1989), 245260.Google Scholar
[13]He, Y. and Lame, I., ‘The Hayman-miles theorem and the differential equation (y′)n = R(z, y)Analysis 10 (1990), 387396.Google Scholar
[14]Hille, E., Ordinary dfferential equation in the complex domain (Wiley and Sons, New York, 1976).Google Scholar
[15]Jank, G. and Volkmann, L., Meromorphe Functionen und Drfferentialgleichungen (Birkhäuser, Basel, 1985).Google Scholar
[16]Jankowski, M., ‘Newton's method for solutions of quasi-Bessel differential equations’, Ann. Acad. Sci. Fenn., Math. 22 (1997), 187204.Google Scholar
[17]Laine, I., Nevanlinna theory and complex differential equations (W. Gruyter, Berlin, 1992).Google Scholar
[18]Mokhon'ko, A. Z. and Mokhon'ko, V. D., ‘Estimates for the Nevanlinna characteristic of some classes of meromorphic functions and their applications to differential equations’, Sib. Math. J. 15 (1974), 921934.CrossRefGoogle Scholar
[19]Nevanlinna, R., Analytic functions (Springer, Berlin, 1970).CrossRefGoogle Scholar
[20]Steinmetz, N., Eigenschaften eindeutiger Lösungen gewöhnlicher Differentialgleichungen im Komplexen (Ph. D. Thesis, Karlsruhe, 1978).Google Scholar
[21]Steinmetz, N., ‘Meromorphe Lösungen der Differentialgleichungen Q(z, w)(d 2w/dz 2)2 = P(z, w)(dw/dz)2’, Complex Variables Theory Appl. 10 (1988), 3141.Google Scholar
[22]Steinmetz, N., Rational iteration (W. Gruyter, Berlin, 1993).CrossRefGoogle Scholar
[23]Wang, Y., ‘Wandering domains in the dynamics of certain meromorphic functions’, Bull. Austr Math. Soc. 59 (1999), 99106.CrossRefGoogle Scholar
[24]Yosida, K., ‘A generalization of Malmquist's theorem’, Japan J. Math. 9 (1933), 253256.CrossRefGoogle Scholar
[25]Zhu, J. H., ‘The general form of Hayman's inequality and the fixed points of meromorphic functions’, Chinese Sd. Bull. 33 (4) (1988), 265269.Google Scholar