Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T01:48:15.175Z Has data issue: false hasContentIssue false

Monothetic algebraic groups

Published online by Cambridge University Press:  09 April 2009

Giovanni Falcone
Affiliation:
Dipartimento di Metodi e Modelli MatematiciUniversità di Palermoviale delle Scienze1-90128 [email protected]
Peter Plaumann
Affiliation:
Mathematisches InstitutUniversität ErlangenBismarckstraße 1 ½D-91054 [email protected]@mi.uni-erlangen.de
Karl Strambach
Affiliation:
Mathematisches InstitutUniversität ErlangenBismarckstraße 1 ½D-91054 [email protected]@mi.uni-erlangen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We call an algebraic group monothetic if it possesses a dense cyclic subgroup. For an arbitrary field k we describe the structure of all, not necessarily affine, monothetic k-groups G and determine in which cases G has a k-rational generator.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Borel, A., Linear algebraic groups, Graduate Texts in Mathematics 126 (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
[2]Frey, G. and Jarden, M., ‘Approximation theory and the rank of abelian varieties over large algebraic fields’, Proc. Lond. Math. Soc. (3) 28 (1974), 112128.CrossRefGoogle Scholar
[3]Fried, M. and Jarden, M., Field Arithmetic (Springer-Verlag, Berlin, 1986).CrossRefGoogle Scholar
[4]Hewitt, E. and Ross, K. A., Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory. Group representations (Springer-Verlag, Berlin, 1963).Google Scholar
[5] J. Humphreys, E., Linear algebraic groups, Graduate Texts in Mathematics 21 (Springer-Verlag, New York, 1975, 1981).CrossRefGoogle Scholar
[6]Husemöller, D., Elliptic curves, Graduate Texts in Mathematics 111 (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
[7]Lang, S., ‘Number theory III: Diophantine geometry’, Encyclopaedia of Mathematical Sciences 60 (ed. Gamkrelize, R. V.) (Springer-Verlag, Berlin, 1991).CrossRefGoogle Scholar
[8]Mumford, D., Abelian varieties (Oxford University Press, Oxford, 1974).Google Scholar
[9]Plaumann, P., Strambach, K. and Zacher, G., ‘Der Verband der zusammenhängenden Untergruppen einer kommutativen algebraischen Gruppe’, Arch. Math. (Basel) 85 (2005), 3748.CrossRefGoogle Scholar
[10]van der Put, M. and Singer, M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften 328 (Springer-Verlag, Berlin, 2003).CrossRefGoogle Scholar
[11]Rosenlicht, M., ‘Some basic theorems on algebraic groups’, Amer. J. Math. 78 (1956), 401443.CrossRefGoogle Scholar
[12]Rosenlicht, M., ‘Extensions of vector groups by abelian varetiesAmer. J. Math. 80 (1958), 685714.CrossRefGoogle Scholar
[13]Rosenlicht, M., ‘The definition of field of definition’, Bol. Soc. Mat. Mexicana (2) 7 (1962), 3946.Google Scholar
[14]van Dantzig, D., ‘Über topologisch homogene Kontinua’, Fund. Math. 15 (1930), 102125.CrossRefGoogle Scholar
[15]Weil, A., Variétés abéliennes et courbes algébriques (Hermann & Cie, Paris, 1948).Google Scholar
[16]Weil, A., Foundations of algebraic geometry (American Mathematical Society, Providence, RI, 1962).Google Scholar