Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T09:56:59.303Z Has data issue: false hasContentIssue false

Monodromy in local groups

Published online by Cambridge University Press:  09 April 2009

C. J. Atkin
Affiliation:
Department of Mathematics Victoria University of Wellington Private Bag, Wellington, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A monodromy theorem for homomorphisms of local groups into groups is proved. It follows that under suitable conditions the universal group of the local group depends only on the germ of the local group (up to natural isomorphism).

1980 Mathematics subject classification (Amer. Math. Soc.): 22 E 05.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Chevalley, C., (1946). Theory of Lie groups, I (Princeton University Press, Princeton, N.J.).Google Scholar
Ganea, T. (1951), ‘Du prolongement des représentations locales des groupes topologiques’, Acta Sci. Math. (Szeged) 14, 115124.Google Scholar
Ganea, T. (1953), ‘Groupes topologiques sans centre’, Rev. Univ. ‘C.I.Parhon’ Politehn. Bucureşti, Ser. Şti. Nat., no. 3, 3738.Google Scholar
Kurosh, A. G. (1960), Theory of groups, II (Chelsea, New York).Google Scholar
Lazard, M. and Tits, J. (1966), ‘Domaines d'injectivité de l'application exponentielle’, Topology 4, 315322.Google Scholar
Pontrjagin, L. S. (1939), Topological groups (Princeton University Press, Princeton, N.J.).Google Scholar
Serre, J.-P. (1965), Lie algebras and Lie groups (Benjamin, New York).Google Scholar
Świerczkowski, S. (1965), ‘Embedding theorems for local analytic groups’, Acta Math. 114, 207235.CrossRefGoogle Scholar
Świerczkowski, S. (1971), ‘The path functor on Banach Lie algebras’, Indagationes Math. 33, 235239.CrossRefGoogle Scholar